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ABSTRACT

Few-shot bioacoustic event detection is a task that detects the oc-
currence time of a novel sound given a few examples. Previous
methods employ metric learning to build a latent space with the la-
beled part of different sound classes, also known as positive events.
In this study, we propose a segment-level few-shot learning frame-
work that utilizes both the positive and negative events during model
optimization. Training with negative events, which are larger in vol-
ume than positive events, can increase the generalization ability of
the model. In addition, we use transductive learning on the valida-
tion set during training for better adaptation to novel classes. We
conduct ablation studies on our proposed method with different se-
tups on input features, training data, and hyper-parameters. Our
final system achieves an F-measure of 62.73 on the DCASE 2022
challenge task 5 (DCASE2022-T5) validation set, outperforming
the performance of the baseline prototypical network 34.02 by a
large margin. Using the proposed method, our submitted system
ranks 2nd in DCASE2022-T5 with an F-measure of 48.2 on the
evaluation set. The code of this paper is open-sourced1.

Index Terms— few-shot learning, transductive learning, metric
learning, audio event detection

1. INTRODUCTION

Few-shot learning (FSL) [1] is a machine learning problem that
makes predictions based on the training data that contains limited
information. Sound event detection (SED) [2] is a task that locates
the onset and offset of certain sound classes. By combining the idea
of FSL with SED [3], a system can detect a new type of sound with
only a few examples. Few-shot SED is useful for audio data label-
ing, especially when the user needs to detect a new type of sound.

Most prior studies use a prototypical network [4] as the main
architecture [5, 6, 7, 8]. Yang et al. [5] propose a mutual learn-
ing framework that employs transductive learning to iteratively im-
prove the feature extractor and classifier, where transductive learn-
ing means the model has access to the test set without labels during
the training process. A smoother manifold of embedding space can
help extend the decision boundary and reduce the noise in data rep-
resentation [9]. Tang et al. [6] propose to use embedding propaga-
tion [9] in few-shot SED to learn a smoother manifold by interpolat-
ing between the model output features based on a similarity graph.
Data augmentations such as spec-augment and mixup are used in
the method described in [7, 8]. There is also a spectrogram-cross-
correlation-based method called template matching [10], which per-
forms detection based on the normalized cross-correlation between
example sound event and unlabeled data.

1https://github.com/haoheliu/DCASE_2022_Task_5
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Figure 1: Training and evaluation procedure of the N-way-M-shot
segment-level metric learning. M denotes the number of segments
or embeddings.

Metric learning [11] refers to learning a distance function and
feature space for a task. Previous metric-learning-based stud-
ies [5, 6] usually optimize the model with the labeled positive
events, by grouping and separating the latent prototypes of the
events with the same and different classes, respectively. The au-
dio chunks that do not contain target events, which we refer to as
negative events, are larger in volume but receive less attention. For
example, in the DCASE 2022 task 5 development set [10], the du-
ration of the negative events is 19.18 hours, accounting for 91.3%
of the training data with a total duration of 21 hours.

In this paper, we propose a segment-level metric learning
method that achieves state-of-the-art results on the few-shot bio-
acoustic detection task. As shown in Figure 1, our system operates
on a segment level. Each sound event can contain multiple seg-
ments. We train a feature extraction network that maps the segments
into latent embeddings, which are averaged into prototypes to rep-
resent different sound classes. To learn a robust latent space, we use
a transductive learning scheme and propose to build contrastive loss
with negative events. We also improve our method by using feature
selection, data augmentation, and post-processing. We perform ab-
lation studies to measure the effectiveness of each component. Our
proposed method achieves an F-measure of 62.73 on the DCASE
task 5 validation set.

This paper will be organized as follows. Section 2 provides
an overview of our system. Section 3 introduces our methodology.
Section 4 discusses the experimental setup. Section 5 reports the
result and the ablation studies. Section 6 summarizes this work and
provides a conclusion.

https://github.com/haoheliu/DCASE_2022_Task_5
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(a) Previous method. (b) Proposed method.

Figure 2: This figure illustrates N -way-M -shot metric learning
when N=3 and M=2. (a) Visualization of the previous method,
which only uses positive classes. (b) The proposed metric learning
with the negative segments we used in our system. Support embed-
dings are omitted for simplicity. xi and x̃i stand for the positive and
negative prototypes of class i.

2. SYSTEM OVERVIEW

We build our system using a prototypical network [4], which is
widely used for metric-based few-shot learning. The training data
T = (Si,Yi)|Ntrain

i=1 contains audio feature set Si = {si|yi = 1} ⊔
{s̃i|yi = 0} and its corresponding label set Yi = {yi|yi ∈ {0, 1}},
where {si} and {s̃i} are the sets of positive and negative segments
for class i, respectively, and Ntrain is the total number of training
classes. The evaluation dataset E = (S′

i,Y′
i)|

Neval
i=1 also contains an

audio feature set S′
i = {s′i} and a label set Y′

i = {y′
i}, where

Neval is the number of classes in the evalution set, |S′
i| = Li and

|Y′
i| = K. Here we have Li ≥ K because the evaluation set is

partially labeled with only first K events. The validation set has the
same structure as the evaluation set. The objective of our system is
properly mapping different audio features into a latent embedding
within a high-dimensional space, where similar audio features are
closer together.

We use episodic training [12] to optimize our system in an
N-way-M-shot way. As illustrated in Figure 2(a), N-way-M-
shot means each training batch will select data from N classes.
And for each classes i, the system will randomly select M seg-
ments {ssij}j=1...M as support segments and another M segments
{sqij}j=1...M as query segments. All the segments in different
classes have the same length. Then a feature extraction net-
work (Section 3.1) will map these segments into fix-length embed-
dings, which are later averaged into query prototypes xq

i and sup-
porting prototypes xs

i . The system is optimized by minimizing the
distance between the query and support prototypes with the same
class. To build a robust latent space and generalize better to the new
class, we propose to use the negative event in metric learning and
the transductive learning scheme in Section 3.2 and 3.3.

During evaluations, the audio file will be segmented using a
sliding window with an adaptive segment length (Section 3.4). The
segments in the labeled parts will be used to build positive and neg-
ative prototypes, which are treated as the latent representation of
the positive and negative events in an audio file. The segments in
the unlabeled part are the query set, which can be classified by cal-
culating and comparing the distance with the positive and negative
prototype (Section 3.5). And if the probability of one query be-
longing to a positive prototype is greater than a threshold h, it will
be classified as positive. Consecutive positive predictions will be

merged into one single event.

3. METHODOLOGY

3.1. Feature extraction network

Our feature extraction network fθ is a convolutional neural net-
work (CNN) based architecture that maps the audio feature s into a
latent embedding x. In a similar way to the architecture proposed
by [13], the network fθ consists of three convolutional blocks with
hidden channels of sizes 64, 128, and 64. Each convolutional block
consists of three two-dimensional CNN layers with batch normal-
ization and leaky rectified linear unit activations [14]. As a common
trick in CNN-based network [13, 15], we apply 2× 2 max-pooling
after each block for downsampling and enlarging the reception field.
The input and output of each convolutional block have a residual
connection processed by a downsampling CNN layer. In order to
maintain the same output dimension with different input lengths,
we apply an adaptive average pooling at the end of the network.
The final output feature map after adaptive pooling is a C × T ×F
size block, which is the final latent embedding of s.

3.2. Segment-level metric learning

We propose to utilize negative segments within negative events dur-
ing model optimization to learn a more robust representation, as
illustrated in Figure 2(b). In a similar way to [3], we first divide
the audio features into segments with equal length for metric learn-
ing. Then fθ maps all the segments into latent embeddings. During
optimization, we will calculate the class probabilities distributions
of the query prototype xq

i , which involves the distance calculation
with all the positive and negative support prototypes. In this case,
the model can learn a larger amount of contrastive information from
the negative events on building the latent space. Specifically, we
first calculate a distance matrix D = [d(1),d(2), ...,d(N)]T ac-
cording to Equation 1,

d
(i)
2j = ∥xq

i − xs
j∥2, d

(i)
2j+1 = ∥xq

i − x̃s
j∥2, (1)

where d(i) ∈ R2N stands for the distance between xq
i and 2N sup-

port prototypes, and x̃s
j denotes the support prototype for the nega-

tive events of class j. Then we optimize our model by maximizing
the probability that xq

i is close to the positive support prototype of
class i, xs

i , given by

d′(i) = log(Softmax(−d(i)))), l = arg maxθ(Σ
N
i=1(d

′(i)
2i ),

(2)
where 0 ≤ i, j ≤ N, i, j ∈ N, and l is the objective function. Note
that the learning process does not involve the query prototypes for
negative events x̃q

i , because x̃q
i and x̃s

i are not guaranteed to have
the same type of sound.

Data balancing is important in this task because different sound
classes have different total durations [10]. In order to balance be-
tween classes, we sample each class with equal probability during
the episodic training. In this way, the model has equal probabilities
to attend to each class and will be less prone to overfitting [16].

3.3. Transductive learning

We adopt a transductive learning [17] approach during training,
which means our model will be optimized both on the fully-labeled
training set and the partially labeled evaluation data. Each file in
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evaluation data has first K labeled events for a particular type of
sound. We treat these K events as positive events and the remain-
ing K chunks of audio in the labeled part as negative events. In the
evaluation set, although the sound class of each file is not available,
files with the same sound class should be in the same subfolder, and
we treat each subfolder of the evaluation set as a different sound
class. Even though the files within each subfolder may not always
contain the same target sound, our experiment shows transductive
learning in this way can still help the model gain better adaptation
to the evaluation set (Section 3).

3.4. Adaptive segment length

We use the same segment length among all classes during train-
ing for the convenience of batch processing. But during evaluation,
using the same segment length is not ideal. For example, using a
segment length that is too long or too short will tend to have a high
false negative rate or false positive rate, respectively. In the evalu-
ation set, different animal or bird species have drastically different
lengths of vocalization, ranging from 30 milliseconds to 5 seconds.
Thus we choose to use adaptive segment lengths during evaluation.

tmax (s) [0,0.1] (0.1,0.4] (0.4,0.8] (0.8,3.0] (3.0, ∞)
Length 8 tmax tmax / 2 tmax / 4 tmax / 8

Table 1: The segment length we use on dividing the evaluation
audio file for different values of tmax.

As shown in Table 1, we set different segment length for each
audio file based on the max length of the labeled events tmax =
max(t1, ..., tK), where t1, ..., tK denotes the duration of the K la-
beled positive events. We set the hop length as one-third of the
window length. Note the parameters here are chosen by experience
and not necessarily optimal.

3.5. Positive and negative prototypes

During the evaluation, we assume the first K labeled positive events
do not contain too much variety, therefore we calculate the pos-
itive prototype by averaging the embeddings of the labeled posi-
tive segments. By comparison, building negative prototypes is more
tricky because negative segments can contain many different kinds
of sounds. So simply averaging all the negative embeddings would
result in a sub-optimal representation of negative prototypes. To ad-
dress these challenges, we choose to run our evaluation six times,
each selecting 30 randomly selected negative segments within the
labeled negative parts, and we average the predicted probabilities
across time of six runs as the final prediction. The negative proto-
type in each run can have a chance to represent different sounds.
This process is similar to the random subspace method [18], in
which the ensemble of several estimators trained with a different
subset of training data can outperform a single estimator optimized
on full training data.

4. EXPERIMENTS

4.1. Dataset

DCASE2022-T5 The DCASE 2022 task 5 dataset2 contains a train-
ing set, a validation set, and an official evaluation set. The training

2https://zenodo.org/record/6482837

and validation set are both fully labeled. The official evaluation set
has the labels of the first five positive events. Our result on the eval-
uation set is available on the DCASE 2022 Challenge result page3.
The full label of the official evaluation set is not released at the time
of writing, hence, we mainly report the result on the validation set
in this paper. The validation during training is not meant to pick
the best model. That’s because we perform validation in a different
way from evaluation. Similar to the training process, we calculate
validation accuracy on a fix-length segment level without adaptive
segment length. Therefore the best model on validation does not
necessarily perform the best during evaluation. Nevertheless, we
use the same validation process in our experiments, so the com-
parisons are fair in different settings. There are also similar ideas
in [19, 20], which utilize the evaluation set for validations.
AudioSet-Aminal-SL AudioSet [21] is a large-scale dataset for
audio research [13, 22]. Considering that the training set of
DCASE2022-T5 only contains 47 different sound classes, we
choose to use the strongly labeled part of the AudioSet dataset4 to
augment training data with a wider variety of sounds. To alleviate
the domain mismatch problem, we only use sound labels that are
related to animal vocalizations and do not overlap with other non-
animal sounds. After data cleaning, we have 1796 pieces of audio
with 37 classes from AudioSet. However, even if the sounds have
the same label in the AudioSet, they can still sound very different.
To alleviate this problem, we treat each audio file in AudioSet as its
own class, so we have 1796 classes in this dataset, which is named
AudioSet-Aminal-SL, where SL means strongly labeled. To bal-
ance the 1796 classes and 47 classes in AudioSet-Aminal-SL and
DCASE2022-T5, we choose half classes from each dataset during
episodic training.

4.2. Evaluation metric

We use the F-measure score, the official evaluation metric provided
by the organizers of DCASE task 5, as our main evaluation met-
ric. We also report system performance with the Polyphonic Sound
Detection Score (PSDS) [23], which is a robust intersection-based
sound event detection evaluation metric. In PSDS, we set the detec-
tion tolerance criterion (DTC) and the ground truth intersection cri-
terion (GTC) to 0.5, and the maximum effective false positive rate
to 100.0. Other parameters like the cross-trigger tolerance criterion
(CTTC) are not used because our task is not polyphonic detection.

4.3. Experimental setup

Following [5], all the audio data are resampled to a 22.5 kHz sam-
pling rate. The input feature of our system is the stack of PCEN [24]
and ∆MFCC [25] features. In the short-time Fourier transform, we
set the window length as 1024 and the hop size as 256. We set the
mel-frequency dimension as 128. The input length of our model
during training is 0.2 seconds. If the sound event is less than 0.2
seconds, zero-padding will be applied. The size of the embedding
mentioned in Section 3.1 is 2048, in which C = 64, T = 4, F = 8.
All the experiments use an initial learning rate of 0.001 with 0.65
exponential decay every 10 epochs. We perform validation after ev-
ery epoch. We perform validation in a 3-way-5-shot manner since
there are only three classes (HB, ME, PB) in the validation set. We
will stop model training if the validation accuracy does not improve

3https://dcase.community/challenge2022/
task-few-shot-bioacoustic-event-detection-results

4https://research.google.com/audioset

https://zenodo.org/record/6482837
https://dcase.community/challenge2022/task-few-shot-bioacoustic-event-detection-results
https://dcase.community/challenge2022/task-few-shot-bioacoustic-event-detection-results
https://research.google.com/audioset
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Figure 3: The training and validation accuracy at different training
steps, both with and without transductive learning, are shown in the
left figure. The right figure is the PSD-ROC curve of our proposed
system. HB, ME, and PB are three subsets in the validation set. The
area under mean TPR curve is PSDS, which indicates the system’s
overall performance. TPR and FPR stand for true positive rate and
false positive rate, respectively.

(a) Input features (b) Embedding dimensions

Figure 4: Ablation study on (a) input features; and (b) em-
bedding dimension. We report the PSDS and F-measure on the
DCASE2022-T5 validation dataset.

for 10 consecutive epochs. And the model with the best validation
accuracy is used for calculating metrics scores. To make full use
of training data, we implement a dynamic data loader that gener-
ates training data with a random starting time on the fly. We as-
sume the duration of one vocalization for a certain animal does not
vary significantly. Therefore, we design the post-processing strat-
egy for a sound class based on maximum length of positive event
tmax = max(t1, ..., tK). We will remove a positive detection if its
length is smaller than α ∗ tmax or greater than β ∗ tmax. We use
different combinations of β = 2.0, α = [0.1, 0.2, ..., 0.9], h =
[0.0, 0.05, ..., 0.95] to calculate data points [23], draw the PSD-
ROC curve, and calculate PSDS. We choose the best F-measure
among all β, α, h combinations as the final F-measure.

5. RESULT

Method Pre. Rec. F-measure PSDS
Template Matching [10] 2.42 18.32 4.28 N/A
ProtoNet (official) [10] 36.34 24.96 29.59 N/A

ProtoNet (our impl) 23.26 63.27 34.02 46.10
Proposed 69.30 57.30 62.73 57.52

Table 2: Comparisons with baseline template matching and proto-
typical network methods. Pre. and Rec. stand for precision and
recall, respectively. The first two methods [10] did not report PSDS
results. All the metrics are written in percentages.

The performance of our system on the validation set is reported
in Table 2. The F-measure score of template matching and our re-

Setting F-measure (%) PSDS (%)
Proposed 62.73 57.52

w/o Negative contrast 55.25 54.95
w/o Transductive learning 56.37 54.50

w/o Post processing 57.27 55.90

Table 3: Ablation study of the proposed method.

Training data F-measure (%) PSDS (%)
DCASE 62.73 57.52

AudioSet-Aminal-SL 46.83 51.00
AudioSet-Aminal-SL & DCASE 58.48 58.77

Table 4: A study on using different training datasets. DCASE
stands for the DCASE2022-T5 dataset.

implemented prototypical network baseline [10] is 4.28 and 34.02,
respectively. Our system outperforms the baselines by a large mar-
gin with an F-measure score of 62.73 and a PSDS of 57.52.

As is shown in Figure 3, using transductive learning can signif-
icantly improve the validation accuracy. And the class-wise ROC
indicates the HB class, which is mostly mosquito sounds, is the eas-
iest one to detect. Class PB is the hardest class perhaps because it
mainly consists of sparse bird calls with strong background noise.
Class ME achieves an average performance in the validation set.

We perform a study on the effect of the input feature. As shown
in Figure 4(a), the performance of F-measure and PSDS is not al-
ways consistent, and we use F-measure to guide our selection con-
sidering it is widely used in prior studies [10]. By comparing the F-
measure score, PCEN+∆MFCC appears to be a good feature com-
bination on the validation set. We also compare different embedding
dimension in Figure 4(b). We change the dimension by altering the
dimension of F in the adaptive average pooling. We notice a di-
mension of 512 can considerably improve over 256, and 2048 has
the best performance among all the settings.

We perform ablations on each of the components we proposed.
As shown in Table 3, if we remove the negative segments, the per-
formance drops considerably. The trend is the same with transduc-
tive learning and post-processing. We also study the effect of train-
ing data. In Table 4, we can see that the best F-measure score is
achieved using the DCASE2022-T5 only. Using AudioSet-SL leads
to an F-measure of 46.83 and a PSDS of 51.00. By combining two
datasets we got an F-measure of 58.48 and a best PSDS of 58.77.
We hypothesize that the degradation of F-measure using AudioSet
is caused by domain mismatch on training data. However, com-
bining two datasets yield the best PSDS, which means using Au-
dioSet data can lead to a general improvement across all threshold
and post-processing settings instead of getting a single best system
with a high F-measure. This indicates that PSDS might be a suitable
metric for the community to reference in this task.

6. CONCLUSIONS

This paper proposes a new framework for few-shot sound event de-
tection. Our proposed metric learning with negative segments and
the transductive learning scheme can significantly improve model
performance. On the input feature, our experiment shows that
PCEN with ∆MFCC yields the best performance in our settings.
Our result also indicates that PSDS might be a useful metric to
evaluate the model’s overall performance by considering multiple
thresholds and post-processing settings.
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