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ABSTRACT

In this paper, we investigate the use of a multi-task learning frame-
work to address the DCASE 2022 Task 1 on Low-complexity
Acoustic Scene Classification (ASC). Specifically, we employ clas-
sification of the recording devices as an additional task to improve
the performance of the ASC task. Both these tasks utilize our pro-
posed convolutional neural network with a shared layer along with
strided and separable convolution operations designed to comply
with the model parameter and computational constraints imposed
by Task 1 organizers. We also explore the use of various data aug-
mentation techniques to improve the generalization of the model.
Evaluations on the development dataset show that our proposed
ASC system consisting of 127.2k parameters with 27.5 million
multiply and accumulate operations provides a significant improve-
ment on overall log-loss and accuracy over the baseline system.

Index Terms— acoustic scene classification, convolutional
neural networks, data augmentation, multi-task learning, quantiza-
tion aware training.

1. INTRODUCTION

The objective of an Acoustic Scene Classification (ASC) system is
to classify a given audio recording of a certain temporal duration
into one of the pre-defined acoustic scenes. As a sub-field of com-
putational auditory scene analysis (CASA) [1,2], ASC has received
much attention as an important and challenging research topic. It
also finds several applications in consumer devices, which incorpo-
rates contextual-aware computing, such as smart-wearables, hear-
ables as well as surveillance [3, 4].

The Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge1, has played an important role in pro-
viding standard datasets for setting algorithmic benchmarks and
to spearhead research on ASC. Over the years, the ASC task in
DCASE challenge series has witnessed several modifications by in-
troducing additional recording devices and constraints for model
complexity. In DCASE 2021 Task 1, the model size of the pro-
posed solutions were constrained to 128 kB for non-zero parame-
ters, with no constraints set on the multiply and accumulate (MAC)
operations. In addition, the length of audio clip for inference was
set as 10 seconds for all the past editions.

A majority of the proposed systems for multi-device ASC task
utilize a single task learning (STL) framework with log-Mel spec-
trogram as input feature to a convolutional neural network (CNN)-
based model, which is trained to predict the acoustic scene [5, 6].
To improve the generalization of the model to unseen devices and

1https://dcase.community/challenge2022/

recordings from unseen locations, many techniques including spec-
trum correction and frequency instance normalization were pro-
posed [6, 7]. In addition to these techniques, various data augmen-
tation strategies have also been employed extensively in the past
to address the same [8, 9]. To meet the model size requirements,
approaches such as model compression with pruning and use of
knowledge distillation have also been well-explored [10, 11].

The latest DCASE 2022 Task 1 [12] is an extension of the previ-
ous editions of DCASE ASC challenges, with an objective to design
an ASC system with low computation complexity and sufficiently
less number of parameters such that it could be deployed for infer-
ence on an edge-device. Specifically, the maximum number of the
model parameters is set to 128k (including the zero-valued ones)
and the variable type is fixed to 8-bit integer (INT8). Further, the
maximum number of MAC operations for each inference is limited
to 30 MMAC (million multiply-accumulate operations), while the
length of the audio for inference is fixed to 1 second. In addition
to these system complexity constraints, the proposed ASC system
is expected to be robust across multiple recording devices and loca-
tions similar to the previous editions.

We address this ASC task by utilizing a multi-task learn-
ing (MTL) framework, where the classification of recording de-
vices is used as an additional task to aid the ASC task. Our pro-
posed CNN model architecture is designed such that it satisfies the
system complexity requirements in terms of MAC operations and
total number of parameters. To further improve generalization abil-
ity of the model to unseen devices, we employ multiple data aug-
mentation techniques. The quantization-aware-training (QAT) and
TFLite tools are then utilized to convert the proposed CNN model
to INT8 representation for performing final inference and compar-
isons to other competing systems along with the challenge baseline.

In the following sections, we first describe the proposed MTL
framework in Section 2. The details of the experimental setup and
results with analysis are reported in Section 3 and Section 4, respec-
tively. Finally, the conclusions are presented in Section 5.

2. DEVICE CLASSIFICATION-AIDED ASC

A majority of the systems developed previously to address ASC us-
ing multiple devices have employed an STL framework. In com-
parison, the use of MTL frameworks for ASC task is less ex-
plored. Generally, an MTL framework consists of an encoder block
with shared layers, which are subsequently connected to multiple
branches with task-specific layers. A solution based on MTL frame-
work was recently proposed for the ASC task of DCASE. The au-
thors of [13] used an additional task of classifying the audio clip to 3
broader acoustic scenes, in addition to the given task of classifying
the audio clip to 10 acoustic scenes for joint training. The 3 broader
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acoustic scenes are higher-level abstractions of the 10 scenes, which
make these tasks highly related to each other.

In DCASE 2022 Task 1 on low-complexity ASC, the develop-
ment dataset consists of audio samples from 3 real-devices (A, B, C)
and 6 simulated devices (S1-S6). In our proposed MTL framework,
we leverage recording device information by classifying recording
devices corresponding to the given audio clip as a task, in addition
to the ASC task. Specifically, we classify the given audio clip to
be recorded using one among the seen real-devices (A, B, C) and
simulated/unseen devices. All the simulated devices (S1-S6) and
unseen devices are grouped to 1 device-class, thereby forming a to-
tal of 4 device-classes. By enabling the shared layers in the encoder
block to learn complementary features to classify the recording de-
vice corresponding to a given audio clip, we envisage that these lay-
ers of the network can learn low-level features which could improve
the performance of the model for multi-device ASC task.

One of the previous works, explored the use of device classifica-
tion for ASC as well [14]. However, for joint training using MTL,
the one-hot encoding representation of the predicted device is ex-
panded and converted as a feature map to the multiple CNN layers
in the ASC branch. Even though the use of such device-information
conditioned MTL training shows improved performance compared
to STL framework, such an approach would require the device-
classification branch to be included during the inference stage as
well. As such, it would increase the number of parameters and MAC
operations of the inference model for the given ASC task. To en-
sure that the feature maps of the shared layers can leverage similar
information without increasing the computation complexity, instead
of utilizing the predicted device as a feature map, we combine the
loss corresponding to the device classification task with the loss of
the ASC task for joint training.

We use a combined loss function, which is the weighted loss
function from the ASC branch and the device classification branch
to perform the joint training of both these tasks. It can be expressed
mathematically as

LMTL = β × Ldevice + (1− β)× LASC, (1)

where β is the trade-off parameter that controls the weighted loss.
Ldevice and LASC corresponds to the 4-device classification loss
and the 10-scene classification loss, respectively. Setting β = 0 is
similar to the STL framework.

The use of MTL framework with joint training utilizing the
weighted loss in Eq (1) for the given ASC task has the additional
advantage that once the MTL-based model is trained, the device
classification branch can be removed from the model architecture.
During the inference stage, only the 10-scene classification branch
is utilized. Therefore, the number of parameters and MAC opera-
tions remains the same as that of the STL framework.

2.1. CNN model architecture

Our proposed MTL framework based on CNN architecture is shown
in Figure 1. It consists of two branches, i.e., a branch corresponding
to the 10-scene classification task and another branch correspond-
ing to the 4-device classification task. The 10-scene classification
branch consists of a combination of separable and strided convolu-
tions. We use L = 5 convolution layers with number of filters set
as (150, 140, 160, 180, 220). It is noted that separable convolutions
are used for all the layers except the first convolution layer. In ad-
dition, a stride of 2 is used for all convolutional layers except the
last convolution layer. Strided convolutions are applied uniformly

Figure 1: The proposed MTL framework with separate branches
for 10-scene classification and 4-device classification task. Conv2D
and SeparableConv2D (n, (p×q), s) represents 2D convolution and
separable convolution operation with n filters of kernel size p × q
with a stride of s.

across both frequency and time dimensions. The kernel size for the
first three convolution layers is chosen as (3× 3), whereas we con-
sider a kernel size of (3 × 5) and (1 × 5) for the fourth and fifth
convolution layers, respectively. Finally, global pooling operation
is performed to gather all the components from the last convolution
layer. The output layer consists of a dense layer with 10 units corre-
sponding to the number of acoustic scene classes which undergoes
softmax(·) operation to obtain the scene prediction probabilities.

For the 4-device classification branch, the output of the first
convolution layer undergoes a global pooling operation and is con-
nected to two dense layers of 32 and 16 units each. The output layer
consists of a dense layer with softmax(·) operation with 4 units cor-
responding to the device classes. Rectified linear unit (ReLU) is
chosen as the activation function and a weight decay of 1e−5 is ap-
plied for all convolution layers. We also use dropout of 0.5 after
the L = 2, 4, 5 convolution layers and a dropout of 0.3 between
the dense layers of the 4-device classification branch. The network
parameters for both the branches are determined empirically.

2.2. INT8 Quantization

As part of the Task 1 constraints, it is required that the model and
the input data used for inference should use INT8 variable type.
To minimize the drop in performance after the quantization step,
we first perform quantization-aware-training (QAT) utilizing Ten-
sorFlow framework with a subset of the training data [15]. After
the model is fine-tuned using QAT, it is converted to INT8 TFLite
model. The number of parameters and the MAC operations of the
TFlite model is computed by using the scripts in Nessi2 toolkit,
which is provided by the Task 1 challenge organizers. The proposed
TFLite model has 127, 236 parameters with 27.53 MMAC opera-
tions, which satisfies the model size and complexity constraints.

2.3. Data augmentation

To ensure that the proposed model is generalized to recordings using
an unseen device or a recording from an unseen location, multiple
data augmentation techniques that are well-explored in the past are
used [16, 17]. In addition, we also explore the use of AugMix [18]

2https://github.com/AlbertoAncilotto/NeSsi
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Table 1: Performance comparison of the STL and the proposed MTL framework for various β. The device-wise log loss is shown in columns
A-S6. The best results are shown in bold.

Framework Average Log Loss Average Accuracy (%) A B C S1 S2 S3 S4 S5 S6
STL 1.333 ± 0.012 51.25 ± 0.33 0.98 1.24 1.11 1.37 1.35 1.35 1.50 1.45 1.61

MTL, β = 0.1 1.327 ± 0.009 51.65 ± 0.31 0.99 1.24 1.11 1.36 1.35 1.33 1.48 1.45 1.61
MTL, β = 0.2 1.319 ± 0.017 51.98 ± 0.55 0.97 1.22 1.11 1.36 1.34 1.34 1.48 1.43 1.58
MTL, β = 0.3 1.323 ± 0.014 51.31 ± 0.55 0.97 1.22 1.11 1.35 1.34 1.34 1.47 1.46 1.61
MTL, β = 0.4 1.347 ± 0.014 50.53 ± 0.54 0.99 1.25 1.13 1.39 1.37 1.37 1.49 1.47 1.63
MTL, β = 0.5 1.335 ± 0.010 51.31 ± 0.40 0.98 1.25 1.12 1.38 1.37 1.36 1.47 1.45 1.59

and RawBoost [19] technique that have not yet been extensively
used for ASC task. Since device classification is utilized in the
MTL framework, it is important to assign the device labels accord-
ing to the augmentation technique being employed. The augmenta-
tion techniques utilized are summarised below.

• Time stretch (TS) : The audio sample is either slowed down
or sped up without altering the pitch by a factor randomly cho-
sen from the uniform distribution [0.8, 1.2].

• Time shift (TSH) : A random start time is chosen from
the 1 second duration of the given audio clip to obtain two au-
dio segments. The augmented audio clip is the appended audio
segments shifted in time.

• Block mixing (BM) : For a given audio clip corresponding
to a particular device and acoustic scene, an additional audio
clip recorded with the same device and belonging to the same
acoustic scene is selected randomly. The augmented audio clip
is the weighted average of the given audio clip and the addi-
tional audio clip.

• AugMix : Similar to the AugMix strategy used for image data
augmentation, a given audio clip undergoes multiple chains of
transformations using the above data augmentation steps (time
stretch, time shift, block mix). At the final stage, the origi-
nal audio clip is combined with the transform-chain augmented
audio clip to obtain the augmented audio sample. We set the
default values of maximum number and depth of the transform
chain to 3 with the α parameter of both Dirichlet and Beta dis-
tribution set to 1.0 as in [18].

• RawBoost : The recently proposed data augmentation tech-
nique RawBoost for anti-spoofing is considered for exploration
in the given ASC task. In RawBoost, multiple notch filters with
randomly chosen center frequencies and bandwidths are used
to design an FIR filter. The use of FIR filter on the given audio
clip, introduces variations on the audio spectrum, which could
improve generalization of the model for unseen device. We set
the similar filter design configurations as used in [19].

Among the above data augmentation techniques, time stretch,
time shift, block mixing and AugMix does not change the frequency
characteristics of the given audio clip. Therefore, they are device-
label invariant techniques. However, the RawBoost technique ap-
plies FIR filtering on the given audio clip which modifies its fre-
quency characteristics. As such, it is a device-label variant tech-
nique and these clips are labeled as belonging to the simulated and
unseen device class. Next, we discuss the experimental setup for
the studies conducted in this work.

3. EXPERIMENTAL SETUP

We use the TAU Urban Acoustic Scenes 2022 Mobile, develop-
ment dataset provided as part of the challenge for the studies in
this work [20]. This development set consists of an official training
and validation split with audio clips of 1 second in duration sam-
pled at 44.1 kHz. The clips correspond to audio scene recordings
from 10 cities using 9 devices: 3 real devices (A, B, C) and 6 sim-
ulated devices (S1-S6). The simulated device recordings (S1-S6)
are obtained by applying impulse responses of real devices and ad-
ditional dynamic range compression on recordings from device A.
There are 102, 150 clips from device A, while for devices (B, C,
S1-S3) there are ≈ 7, 500 clips each. It should be noted that the
audio clips corresponding to devices S4-S6 does not appear in the
training split and is only present in the validation split. The 10 au-
dio scenes to be classified are namely {“Airport”, “Indoor shopping
mall”, “Metro station”, “Pedestrian street”, “Public square”, “Street
with medium level of traffic”, “Travelling by a tram”, “Travelling
by a bus”, “Travelling by an underground metro” & “Urban park”}.

We do not utilize any external data or pre-trained models for
training our proposed system. For each audio clip, we compute
the short-time Fourier transform (STFT) of the signal by using a
frame length of 2048 samples and hop length of 1024 samples. Af-
ter computing the STFT, the corresponding log Mel-spectrogram is
computed with 256 Mel-bins. We then obtain a time-frequency (TF)
representation of each audio clip with dimension 44 × 256, which
is provided as the input feature to the proposed MTL framework.

During training, the optimization is performed using the Adam
optimizer [21], with an initial learning rate of 0.001 and a maximum
epoch of 200 with a batch size of 32 samples. The learning rate is
reduced by a factor of 0.1 if the validation loss does not decrease
after 5 epochs. Early stopping method is used to stop the training
if the validation loss does not decrease after 10 epochs. The cate-
gorical focal loss [22] is chosen as the loss function for both classi-
fication tasks. For all the evaluations, we utilize the validation split
from the development set. The multi-class cross-entropy (log loss)
is used as the primary metric for evaluating system performance
along with average of the class-wise accuracy as a secondary mea-
sure. The performances are evaluated over 5 trials and the average
results are reported.

4. RESULTS AND ANALYSIS

This section discusses the results and their analysis conducted for
various studies in this work. The impact of proposed MTL frame-
work and data augmentation on ASC and comparison to other sys-
tems are reported in the following subsections.
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Table 2: Performance comparison for various data augmentation approaches and their combination. The best results are shown in bold.

Method Avg. Log Loss Avg. Acc. (%) A B C S1 S2 S3 S4 S5 S6
No Data Augmentation 1.319 ± 0.017 51.98 ± 0.55 0.97 1.22 1.11 1.36 1.34 1.34 1.48 1.43 1.58

TS + TSH + BM (1) 1.314 ± 0.007 52.08 ± 0.33 0.96 1.21 1.13 1.36 1.34 1.32 1.46 1.44 1.56
AugMix (2) 1.309 ± 0.014 52.45 ± 0.56 0.96 1.23 1.12 1.35 1.33 1.33 1.43 1.43 1.56

RawBoost (3) 1.298 ± 0.010 52.22 ± 0.71 0.99 1.18 1.10 1.33 1.33 1.31 1.41 1.41 1.58
Combined (1) + (2) + (3) 1.265 ± 0.009 53.59 ± 0.43 0.94 1.17 1.07 1.29 1.32 1.28 1.39 1.40 1.50

4.1. Performance evaluation of STL and MTL framework

We begin our experiments by evaluating the performance of the
ASC system using the STL and MTL framework. For both these
frameworks, the samples from the training split of the development
dataset are used without applying any specific data augmentation
technique. For MTL framework, the trade-off parameter, β is varied
from 0.1 to 0.5. Since our primary task is the 10-scene classifica-
tion, we set the maximum value of β as 0.5, which corresponds to
equal weight to the loss of both tasks. The average log loss and the
average accuracy obtained using the STL and MTL framework for
various β are shown in Table 1. It can be seen that the MTL frame-
work with β = 0.2 achieves the best performance with an average
log loss of 1.319 and an average accuracy of 51.98%. In com-
parison, the STL framework achieves an average log loss of 1.333
and an average accuracy of 51.25%. From the results belonging to
device-wise log loss, it can be seen that the use of MTL framework
achieves comparatively lower log loss for most of the seen and un-
seen devices. In addition, we note that the MTL framework with
β = 0.2 achieves an average accuracy of ≈ 97% on the 4-device
classification task. This indicates that enabling the shared layer to
learn device-specific low-level features helps to improve the ASC
task. Since the MTL framework with β = 0.2 achieves the best
ASC performance, we use the same for the rest of our experiments.

4.2. Performance evaluation of data augmentation techniques

In this set of experiments, we evaluate the performance of the pro-
posed MTL framework using various data augmentation methods
presented in Section 2.3. A given data augmentation technique is
applied separately on all the samples in the training dataset for com-
paring its effect on the ASC task. We apply the time stretch, time
shift and block mixing with equal probability and combine them as
one data augmentation technique (TS + TSH + BM). The average
log loss, average accuracy as well as the device-wise log loss ob-
tained using none of the data augmentation techniques and applying
each of them separately is shown in Table 3. It can be seen that each
augmentation technique helps to improve the average log loss and
accuracy. Since the objective of RawBoost technique is to generate
unseen/simulated devices, its performance especially on devices S4
and S5 is improved, while performance on device A is degraded.
Subsequently, all the data augmentation techniques are combined
to train our final model. It achieves an average log loss and aver-
age accuracy of 1.265 and 53.59% respectively, which are better
than those obtained with any of the individual data augmentation
methods as well as those without any augmentation.

4.3. Comparison to other systems

We now compare the performance of the proposed MTL-based ASC
system on the development set with the well performing systems

Table 3: Performance comparison of the proposed MTL-based sys-
tem with other well performing systems on the development set of
DCASE 2022 Task 1.

System Avg. Log Loss Avg. Accuracy (%)
Lee et al. [24] 0.835 70.1

Anastácio et al. [25] 1.103 60.5
Schmid et al. [26] 1.139 58.0

Sugahara et al. [23] 1.182 56.5
Kim et al. [27] 1.259 54.0

Proposed MTL (Ours) 1.273 53.5
Morocutti et al. [28] 1.288 52.7

Xin et al. [29] 1.295 60.3
Yu et al. [30] 1.305 51.7

Shao et al. [31] 1.360 54.1
Baseline [12] 1.575 42.9

submitted to the DCASE Task 1 challenge on low-complexity ASC
as well as the challenge baseline. To this extent, we perform INT8
quantization on our best performing model as described in Sec-
tion 2.2 for inference. The INT8 quantized model achieves an aver-
age log loss 1.273 and an average accuracy of 53.5%. The reported
performances of other systems and the baseline, sorted with refer-
ence to average log loss are shown in Table 3. It can be seen that we
achieve a comparable performance with other systems with a signif-
icant improvement over the baseline system. We note that most of
the proposed systems are based on STL frameworks, which utilize
knowledge distillation technique for model design. However, Sug-
ahara et al. [23] uses an MTL framework with the 3 broader ASC
as the additional task. It is also noted that the baseline system uses
a 3-layer CNN using log Mel-spectrograms with 46, 512 parameters
and 29.23 MMACS [12].

5. CONCLUSIONS

In this paper, we explore the use of an MTL framework with
the device classification task as an additional task to address the
DCASE 2022 Task 1 on low-complexity ASC. The proposed CNN
model is designed such that it meets the Task 1 model complexity
constraints. We also explore the use of various data augmentation
techniques to improve the generalization of the model. Evaluations
on the development set show that the use of MTL framework along
with the various data augmentation techniques help to improve the
performance of the ASC task.
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