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ABSTRACT

In this paper we study two major challenges in few-shot bioacous-
tic event detection: variable event lengths and false-positives. We
use prototypical networks where the embedding function is trained
using a multi-label sound event detection model instead of using
episodic training as the proxy task on the provided training dataset.
This is motivated by polyphonic sound events being present in the
base training data. We propose a method to choose the embedding
function based on the average event length of the few-shot exam-
ples and show that this makes the method more robust towards vari-
able event lengths. Further, we show that an ensemble of proto-
typical neural networks trained on different training and validation
splits of time-frequency images with different loudness normaliza-
tions reduces false-positives. In addition, we present an analysis on
the effect that the studied loudness normalization techniques have
on the performance of the prototypical network ensemble. Overall,
per-channel energy normalization (PCEN) outperforms the standard
log transform for this task. The method uses no data augmentation
and no external data. The proposed approach achieves a F-score of
48.0% when evaluated on the hidden test set of the Detection and
Classification of Acoustic Scenes and Events (DCASE) task 5.

Index Terms— Machine listening, bioacoustics, few-shot
learning, ensemble

1. INTRODUCTION

The human-induced accelerated loss in biodiversity [1] has led to
a need for automated and low-cost wildlife monitoring where ma-
chine learning is a promising way forward [2]. Passive acoustic
monitoring (PAM) is becoming an important tool in ecology for
monitoring animal populations through their vocalizations [3]. An-
notating PAM data is costly and requires specific domain expertise
which motivates research on few-shot learning for bioacoustic event
detection [4]. The goal of few-shot bioacoustic event detection is to
detect the onset and offset of animal vocalizations in sound record-
ings using only a few annotated examples.

Recent work has demonstrated that prototypical networks are a
promising approach for few-shot sound event detection [5, 16, 7], but
aremaining challenge is high variance in classification accuracy be-
tween models because of the small amount of training data. Recent
work on audio classification and sound event detection has demon-
strated promising results using ensembles [8| 9] [10]. Ensembles
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may be especially useful for the few-shot task due to the high vari-
ance in classification accuracy between models [11]. To the best
of our knowledge, prior work on ensemble methods for few-shot
sound event detection remains understudied and motivated by this
we study the effect of using an ensemble of prototypical networks
for few-shot bioacoustic event detection.

Another challenge in few-shot sound event detection is the high
variability in event lengths for the different event classes [6]. The
event lengths can range from milliseconds to multiple seconds,
which necessitates methods capable of adapting to the task specific
event lengths. Wang et al. [6] suggest that future work should look
into adapting the context window to the few-shot task. A common
approach is to use a model which can handle variable context win-
dows, train using a fixed context window, and at test time adapt
the context window to the few-shot task. In this work we propose
choosing the embedding function as well as the context window
based on the few-shot examples. The embedding function is chosen
from a set of embedding functions trained on different context win-
dows, thus acting as experts on certain event lengths. Another way
to approach this problem is by using a proposal based method [12].

2. METHOD

In this section we present our method which is based on
prototypical networks [13] and extended with an event-length
adapted ensemble. We describe how each embedding func-
tion for the prototypical networks is trained and how the em-
bedding functions are selected based on the few-shot exam-
ples to produce an ensemble prediction at test time. The full
source code and instructions on how to reproduce the results can
be found at: |[https://github.com/johnmartinsson/
few-shot-learning-biocacoustics.

2.1. Training the embedding function

The goal is to learn an embedding function from the base training
data, acting as a proxy task for the few-shot task. The base training
data set consists of annotated sound recordings for 47 known event
classes and one “unknown” event class. The set of sound event
classes are disjoint between the base training data and the few-shot
task. We are given the start and end times Ay = {(s¥,e¥)}L, of
these classes, where (sf7 ef) denotes the start and end time of sound
event class k for annotation ¢. There is overlap in the annotations,
i.e. two different sound events can occur (partially) simultaneously,
and we therefore treat this as a multi-label problem. We model the
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Figure 1: A log Mel spectrogram of part of a sound recording (top) and examples of predictions (bottom) from an ensemble prototypical
network (solid blue line) and a prototypical network (dashed blue line) as well as the given few-shot examples (purple line) and remaining
ground truth events (green line). The decision threshold 7 is 0.5 (red line).

47 known sound event classes and the “unknown” sound event class
identically, yielding a total of K = 48 classes.

We assume that a fixed length audio segment 2z € RT, con-
sisting of 7" consecutive audio samples, is fed to the embedding
function ng : RT — RM (see section for further details),
where M < T'. We split the audio recordings into audio segments
z; € RT by sliding a window of size T with a hop size of T'/2
over each recording. For each audio segment x;, a target vector
yi € {0,1}5*" is derived. If n = T it means that the target con-
tains one label per audio sample. Choosing n < I" means that the
temporal resolution for the target is reduced. The resulting dataset
Dy, = {(z4,y:)}}L, defines the sound event detection task used to
train the embedding function.

A prediction of the target classes for a given audio segment x; is
derived by §; = hg(f7 (;)), where hy(-) is a linear layer followed
by an element-wise sigmoid activation function, and f¢ (-) is a con-
volutional neural network where the first layer is a (non-learnable)
time-frequency transform.

The loss function is the mean element-wise binary cross-
entropy between the target y; and the prediction ¢;, where the mean
is taken over the class dimension K and the temporal dimension n.

For a fixed T', we train a set of C' different embedding functions,
parameterized as © = {61, ..., 0¢}, each with different randomly
initialized weights of the neural network, different training and val-
idation splits of the base training data, and different time-frequency
transforms in the first layer of the embedding function.

2.2. Prototypical network at test time

At test time we are given a sound recording and the M = 5 first
event examples of the class of interest. We denote these A, =
{(s4, )}, and call them the positive sound events. We assume
that the gaps between the positive event annotations are background
noise and let A, = {(e;, si+1)}2, " denote the start and end time
of the M — 1 first negative sound events. We assume the likelihood
of an annotator missing events to be low.

Let l; = e; — s; be the length of annotation ¢. If I; < T we

“expand” the annotation with the (7" — [;)/2 preceding and sub-
sequent audio samples to get an audio segment of length 7", and
if [; > T" we do not expand. We then split this into segments of
length 7" by sliding a window of size 7" over the signal with a hop
size of T'/16 (if expanded this will only result in one segment). Let
Sp denote the set of positive audio segments derived from these an-
notated start and end times, and let .S,, denote the set of negative
audio segments. We use the embedding function f¢ and define the

prototypes as
1
=5 > fi (@) Q)
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and derive a pseudo-probability of audio segment x belonging to
sound class k from the prototypical network by

) — Pl (@).)
S exp(—d(f7 (@), en))’

where k € {n,p} and d(f{ (), cx) denotes the Euclidean distance
between the query f¢ (x) and the prototype cx.

The query set S is derived by sliding a window of size 1" over
the signal with a hop size of T'/2. The reason for setting the hop size
relative to 7" is that this means that we do equally many predictions
for each audio sample in the validation recordings.

(@3]

po(y =

2.3. Our contributions

We now present the two main contributions of this paper: i) an
event-length adapted embedding function for the few-shot task, and
ii) using an ensemble of predictions.

Adapting the embedding function. We use the annotated positive
events A, = {(si,e:)}L, and compute the set of event lengths
L={e — si}f\il. We choose T € {11, 2Ty, 22T, 23T1} such
that \/(T" — lmin/2)? is minimized, where Imin is the shortest event
length in L.

We choose 17 = 2048 which is 0.09 seconds at a sampling
rate of 22050 Hz so that we can plausibly detect the shortest
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events in the few-shot validation set. We limit the amount of extra
computation needed during training and the extra memory needed
during inference by setting the maximum 7 to 237.

Ensemble. Let © = {07 }<, denote the set of parameters
of C' different prototypical network models adapted to the average
event length of the few-shot task. Then we define

1
pe(y =Hklw) = 5 > poly = klz) 3)
0€©

asin [14]], which can be viewed as a uniformly-weighted mixture of
experts. We say that = belongs to the positive event class if po (y =
p|z) > 7 and otherwise = belongs to the negative event class. This
is done for every x € S,. Finally, if the query is classified as a
positive event then the start and end time associated with that query
is used as the predicted positive event timings.

2.4. Details of the embedding function

The embedding function consists of a time-frequency transform
followed by a convolutional neural network, both of which are
briefly described below.

Time-frequency transform. The first layer of the embed-
ding function is a time-frequency transform. We use the Mel
transform where the number of Mel bins is 128, the window size
is roughly 25ms, and the hop size is half the window size. We
either use the log transform as a loudness normalization or we use
PCEN [15] with fixed parameters developed for speech audio or
for bioacoustics as suggested in [[16].

Convolutional neural network. The convolutional neural
network used is an adapted version of the 10-layer residual neural
network [17] used in the baseline for the challenge. Specifically,
we 1) add the classification head hg(-) so that we can model the
defined multi-label task, ii) use the same number of filters in every
convolutional layer, and iii) reduce the max pooling along the
time-dimension when audio segments are too short.

2.5. Evaluation metric

The method is evaluated by taking the harmonic mean over the
F-scores for the different subsets in the evaluation sets. The F-
score is computed by a bi-partite matching between the predicted
and ground truth events, where the requirement for a match is an
intersection-over-union (IoU) of at least 0.3 [4].

2.6. Post-processing

Since we get one prediction for each query audio segment, this lim-
its the possible length of the prediction with this model. To solve
this, we simply merge all overlapping predicted positive events into
one detected event with a single start and end time.

A predicted positive event will only be considered to be a
match with a true positive event during evaluation if they have
an intersection-over-union (IoU) of at least 0.3. We therefore re-
move predictions which are shorter than 0.3 * I, or longer than
(1/0.3) * lave, Where Iy, is the average event length of the given
five annotations. Since predictions of these lengths can on average
not be matched with true events as the evaluation is defined.
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Subset Mean event length  Mean gap length  Mean density
HB 11.25 £ 3.11 6.12+£5.39 0.73£0.12
ME 0.22 £0.03 1.40+0.04 0.1740.02
PB 0.12+£0.08 59.89 £ 55.55 0.01 +£0.02

Table 1: Few-shot validation data statistics.

3. DATA

We use the few-shot examples to compute the mean event length,
the mean gap length, and the density of annotated sound events —
see table [II The few-shot validation set consists of three different
subsets: HB, ME, and PB. The HB subset contains long events with
low noise. The ME subset contains short events with low noise.
The PB subset contains very short events with very high noise. The
mean event length is defined as the mean length of the five annotated
events; the mean gap length is defined as the mean length of the
unannotated gaps between the five annotated events; and the density
is the sum of the time of the five annotated events divided by the
total time. A full description of the dataset can be found in [18].

4. EXPERIMENTS AND RESULTS

We have trained each embedding function on the described multi-
label task on the base training data using the Adam [19] optimizer
with a learning rate of 1le—3. The network is trained on a random
split with 80% training data and validated on the remaining 20%.
Each network in the ensemble is trained on a different random split.
The training proceeds until we have observed no reduction in val-
idation loss for the last 10 epochs and the model with the lowest
validation loss is chosen as the final model. The temporal resolu-
tion of the targets have been fixed to n = 16, meaning that we have
16 targets for any given audio segment.

In figure 2a] we compare the F-score achieved on the few-shot
validation set when using an ensemble of five predictions with us-
ing each of these predictions by themselves. The time-frequency
transform used is PCEN (bioacoustics). The achieved F-score by
the ensemble is higher than the best of these individual predictions
for 0.4 < 7 < 0.6, and outperforms or matches the mean of them
for other 7. We also note that the optimal 7 is around 0.7 for the
single predictions, and moves to 0.6 for the ensemble.

In figure 2B we compare the F-score of a five prediction ensem-
ble for each time-frequency transform and compare this to an en-
semble over all three time-frequency transform ensembles. We do
not observe a significant increase in F-score when comparing the
time-frequency ensemble to the ensemble using the PCEN (bioa-
coustic) time-frequency transform, but the time-frequency ensem-
ble outperforms the ensemble using PCEN (speech) and log Mel
transform. The optimal threshold 7 varies around 0.6 to 0.7 for
the ensembles using a single transform, and is at 0.6 for the time-
frequency ensemble.

In figure we compare the F-score achieved on the few-
shot validation set when using the event-length adapted embed-
ding functions in the ensemble with using any of the fixed T €
{T1,2'Ty,2°T1,23T1}. Adapting the embedding function in-
creases performance from 53.0% (using best 7' = 4096) to 60.0%
F-score for 7 = 0.6.

In table 2] we show an ablation study. Adapting the embed-
ding function increases the F-score on average with 8.3 percentage
points, and adding the ensemble increases the F-score an additional
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Figure 2: A comparison between: (a) an ensemble of five predictions using embedding functions trained on PCEN (bioacoustics) features
with each of the individual predictions, (b) an ensemble of embedding functions trained and tested on log Mel, PCEN (bioacoustics), or PCEN
(speech), with an ensemble of predictions over all three, and (c) the adaptive embedding function with using each of the fixed size embedding
functions respectively (sr denotes the sample rate). All results in the figure are derived on the few-shot validation set.

Method Ensemble Adaptive F-score
Ours No No 41.3 £3.8
Ours No Yes 49.6 £5.3
Ours Yes Yes 60.0

Table 2: An ablation study of our system on the few-shot validation
set where we add adaptive embedding functions and ensemble.

System External data ~ Augmentation F-score
Baseline (TM) No No 12.3
Baseline (PN) No No 5.3
Ours [20] No No 48.0
Tang et al., [21] No No 62.1
Liu et al., [22] Yes Yes 48.2
Hertkorn [23] No No 44 .4
Liu et al., [24] Yes Yes 443

Table 3: The final F-score evaluation on the hidden test set for the
baselines provided by the challenge organizers: template matching
(TM) and prototypical networks (PN), and the top five submissions
for the challenge.

11.4 percentage points. We compare against a prototypical network
using an embedding function (no ensemble) which has been trained
on PCEN (speech) and a best performing fixed segment length of
4096. The F-score when no ensemble is performed is the average
(and standard deviation) over each single network in the ensemble.

In table [3] we present the F-score from the final evaluation on
the hidden test set from the challenge. We include information on
whether or not the system uses data augmentation techniques or
external datasets during training.

5. DISCUSSION AND CONCLUSIONS

In this section we will discuss our results and relate them to the
baselines which were all developed concurrently to our work.
During development of this method we observed that random
sampling of Sy, the set of negative examples does not work well for
validation files with high event densities, which is why we chose to

use the gaps between the first five annotated events instead. This ob-
servation was also made in concurrent work submitted to the chal-
lenge [21} 22} 24]

We further observed that a fixed audio segment size 7" resulted
in poor predictive performance on the few-shot validation set in
cases where event-lengths deviated from size 7'. Indicating the im-
portance of adapting the embedding function.

We observed that the optimal threshold was different for the
few-shot validation tasks and choosing a default value of 7 = 0.5 to
be detrimental. However, finding an optimal threshold for the few-
shot tasks is a difficult problem. Using an ensemble alleviates this
issue by moving the optimal threshold closer to the default value.

The ensemble improves performance by correctly predicting
most true positives, while reducing the number of false positives.
This could intuitively be thought of as the ensemble being in agree-
ment for true positive predictions, the average of which still yields
a high pseudo-probability, while being in disagreement when pre-
dicting false positives, the average of which would be closer to 0.5.
This effect can be seen in figure [T} where some of the false posi-
tives predicted when not using an ensemble (dashed blue line) are
removed by using an ensemble of the predictions (solid blue line),
leading to a reduction in false-positives.

The baselines in this study were all developed concurrently
to our work. Tang et al., [21] propose using a frame-level cross-
entropy loss function for training instead of episodic training as the
proxy task. Our approach is similar when setting the temporal res-
olution n of the target vector to the number of frames in the time-
frequency image. The effect of varying temporal resolutions n for
the proxy task would be interesting to study in future work. Tang
et al. [21] further propose an iterative training scheme to adapt their
method to the few-shot task [21] where the unlabeled audio in the
test files is iteratively classified and then used for training. Liu et
al. [22] and Liu et al. [24] use transductive inference to better adapt
to the evaluation set, and Hertkorn [23] studies the importance of
choosing appropriate parameters for the used time-frequency trans-
form.

In conclusion, we have shown that choosing the embedding
function based on the event lengths will increase performance, and
that false-positives can be reduced by an ensemble of predictions.
‘We have also shown that out of the three time-frequency transforms
we have studied, PCEN (bioacoustics) performs best, followed by
PCEN (speech) and log Mel.
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