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ABSTRACT

Detecting anomalies in sound data has recently received sig-
nificant attention due to the increasing number of implementations
of sound condition monitoring solutions for critical assets. In this
context, changing operating conditions impose significant domain
shifts resulting in performance drops if a model trained on a set
of operating conditions is applied to a new operating condition.
An essential challenge is distinguishing between anomalies due to
faults and new operating conditions. Therefore, the high variabil-
ity of operating conditions or even the emergence of new operating
conditions requires algorithms that can be applied under all con-
ditions. Therefore, domain generalization approaches need to be
developed to tackle this challenge. In this paper, we propose a
novel framework that leads to a representation that separates the
health state from changes in operating conditions in the latent space.
This research introduces DG-Mix (Domain Generalization Mixup),
an algorithm inspired by the recent Variance-Invariance-Covariance
Regularization (VICReg) framework. Extending the original VI-
CReg algorithm, we propose to use Mixup between two samples
of the same machine type as a transformation and apply a geomet-
ric constraint instead of an invariance loss. This approach allows
us to learn a representation that distinguishes between the oper-
ating conditions in an unsupervised way. The proposed DG-Mix
enables the generalization between different machine types and di-
verse operating conditions without an additional adaptation of the
hyperparameters or an ensemble method. DG-Mix provides supe-
rior performance and outperforms the baselines on the development
dataset of DCASE 2022 challenge task 2. We also demonstrate that
training using DG-Mix and then fine-tuning the model to a specific
task significantly improves the model’s performance.

Index Terms— Unsupervised Learning, Mixup, Domain Gen-
eralization, Self-Supervised Learning, Anomalous Sound Detection

1. INTRODUCTION

Anomalous sound detection (ASD) is the task of identifying
whether the sound emitted by a machine is normal or abnor-
mal [1, 2, 3]. One of the main challenges of this task is to dis-
tinguish between novel operating conditions or novel background
noise and real anomalies caused by a machine fault or malfunction.
Moreover, the sound emitted by machines of the same type but op-
erated differently or installed under different conditions may differ
significantly. Deep learning models have recently demonstrated ex-
cellent performance in detecting abnormal sounds under different
scenarios. The directions pursued to tackle these challenges range
from Unsupervised Anomalous sound detection [4, 5, 6], where

only normal sound samples are used for training, to domain adap-
tation techniques for bridging domain shifts [7]. Domain shifts are
discrepancies in the acoustic signals between a source and a target
domain mainly caused by differences in machine operating condi-
tions or ambient noise. The shifts result in performance drops if a
model trained on a set of operating conditions is applied to a new
operating condition.

In real-world applications, the background noise of the machine
can be affected by various sound sources surrounding the machine.
Therefore, it is difficult to identify the distinct causes of the changes
and attribute them to the domain shift. Consequently, it is necessary
to develop a method that can be generalized to different changes
in operating conditions without relying on the detection of domain
shifts.

In this paper, we propose a novel algorithm DG-Mix (Domain
Generalization Mixup), which aims to learn representations that dis-
tinguish between the different operating and recording conditions in
an unsupervised manner. Three objectives are thereby pursued: (1)
reveal the impact of attributes on the data by enforcing embeddings
in the same batch to be different, (2) obtain uncorrelated embed-
ding features containing specific information, (3) respect defined
geometrical constraints between the different domains. We also in-
vestigate how self-supervised learning pre-training helps our model
to learn more robust and more general representations that general-
ize across various operating conditions for different machine types,
and are robust to different noise levels and noise types. To this end,
our proposed algorithm is compared on the one hand to another
popular self-supervised approach, VICReg, and on the other hand
to our proposed model trained from scratch. We evaluated the pro-
posed approach and submitted it to task 2, “Unsupervised anoma-
lous sound detection (ASD) for machine condition monitoring ap-
plying domain generalization techniques” of the DCASE challenge
2022 [8]. In experimental evaluations, it is shown that the proposed
technique significantly outperforms both baseline approaches but
also the originally proposed VICReg on the source and target do-
mains of the development set.

2. DATASET

The dataset of this task was generated from the MIMII DG [9] (Mal-
functioning Industrial Machine Investigation and Inspection for Do-
main Generalization) and ToyADMOS2 [10] (Anomaly Detection
in Machine Operating Sounds) datasets consisting of normal and
anomalous operating sounds of seven types of toy/real machines.
ToyCar and ToyTrain machine types are extracted from ToyAD-
MOS?2 dataset while fan, gearbox, bearing, slide rail, and valve
are extracted from MIMII DG dataset. Each recording is a single-
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channel 10-second audio signal sampled at 16 kHz. The signals
originate from a mixture between machine sounds and environmen-
tal noise samples of several real-world factories. Each machine type
contains six sections. The dataset is divided into a development set
of three sections and an evaluation set consisting of the other three
sections. For each section, there are 1000 training samples, includ-
ing 990 source samples and ten target samples. In this research, we
use all the training data in the development dataset and the addi-
tional training dataset for training the models.

3. METHOD

We propose a new framework inspired by the Variance-Invariance-
Covariance Regularization (VICReg), a self-supervised algorithm
proposed in [11]. We give an overview of our proposed approach in
Figure 1. The framework is composed of (1) a self-supervised learn-
ing algorithm, (2) a subsequent fine-tuning step and (3) an anomaly
detection phase based on k-Nearest Neighbors (k-NN) [12].

The objective of the self-supervised task is to learn an encoder
that provides meaningful representations of audio samples. This
pre-trained encoder is then used and fine-tuned to perform super-
vised classification of the section ID. Finally, we use the embed-
dings from the encoder to compute an anomaly score with k-NN.

3.1. Audio Prepocessing

To simplify the task, all audio samples are provided with only one
channel. Each audio sample is then transformed into a log-mel spec-
trogram. The input given to our model is a two-dimensional image-
like feature X € RT*F . The frame size of the Short-Time Fourier
Transform (STFT) is 64 ms, and the hop size is 32 ms. We also
set the number of Mel bins F' to 128. The number of frames of the
context window P is fixed to 64. The context window is shifted by
L frames resulting in B extracted images, with B = [T72] with
L = 8. Given the previous parameters, the total spectrogram size
T is equal to 313.

3.2. CNN Architectures

We used the MobileNetV2 [13] backbone trained from scratch in
this work. The off-the-shelf Pytorch [14] implementation of Mo-
bileNetV2 is used. The width multiplier parameter is set to 0.5, and
the last layers are adapted to obtain a 320-dimensional vector per
input image. Table 1 provides a detailed summary of the applied
CNN architecture, with a total parameter number of 1.45M.

3.3. DG-Mix : Self-Supervised Pre-training

The first step of our approach is based on a self-supervised learning
algorithm inspired by VICReg [11]. This framework provides a
good feature representation for image classification problems.
Background: VICReg is an algorithm based on Siamese networks.
VICReg aims to prevent a collapse by regularising the variance and
covariance of the network outputs. The objective function of VI-
CReg contains three main terms: a variance term, an invariance
term, and a covariance term.

1. Variance: Regularization term that prevents mode collapse

2. Covariance: Regularization term that prevents dimensional
collapse.

3. Invariance: Similarity metric to be minimized between two
augmented views of the same source image.
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Input Operator t c n|s

128 x 64 x 3 | conv2d 3x3 | - 16 1|2
64 x 32 x 16 bottleneck 1 8 11
64 x 32 x 8 bottleneck 6 16 | 2|2
32 x 16 x 16 | bottleneck | 6 16 | 3|2
16 x 8 x 16 bottleneck | 6 | 32 | 4 | 2
8 x 4 x 32 bottleneck 6| 48 | 3|1
8 x 4 x 48 bottleneck | 6 | 80 | 3 | 2
4 x 2 x 80 bottleneck | 6 | 160 | 1 | 1
4x2x160 | conv2d Ix1 | - | 320 | 1 | 1
4x2x320 | conv2d4x2 | - [ 320 | 1 | 1
1 x1x320 conv2d Ix1 | - | 320 | 1

Table 1: Modified MobileNetV2 architecture used for all exper-
iments. Each row represents the sequence of layers, repeated n
times, with ¢ channels, and stride s

Proposed Approach: Figure 1 provides an overview of DG-MIX.
The proposed loss comprises three parts. The last two terms cor-
respond to the variance and covariance losses presented in the VI-
CReg [11] implementation, while we propose to substitute the third
part (representing the invariance criterion in VICReg) with a term
that enforces the embedding features of the source and target do-
mains to be distinguishable. Thereby, we are able to learn a specific
representation for both domains. For each machine type, we train a
Siamese architecture where the three branches are similar and share
the same weights. Each branch is composed of an encoder fy which
corresponds to the modified MobileNetV2 presented in Table 1, fol-
lowed by an expander hy. The expander is composed of three fully-
connected layers of size 1280. Each of the layers is followed by a
batch normalization layer [15] and a ReLU [16] activation function.

In order to mitigate the gap between the source and target do-
mains, we propose to extend the VICReg framework [11] by using
Mixup [17] to augment the target domain. Furthermore, a novel loss
is proposed to take into account the added Mixup branch, acting as
a regularization term and improving domain generalization.

While in the original VICReg approach, a data augmentation
approach is applied, we propose to impose similarity between the
sample representations. Given all the S log Mel-spectrograms from
both the source and target domains of all sections for each machine
type, two different samples, X and X’ are selected. For each such
pair of samples, a linear combination with respect to \ is obtained.
This combination gives rise to a new sample denoted as X . For-
mally, X is a realization of a beta distribution Beta(«, 8) and rep-
resents the mixup rate. In our case we set o = § = 0.5.

First X, X’ and X are encoded by fp resulting in Y, Y and
Yy, and then mapped by the expander on the embeddings, Z, Z’
and Z. The loss is composed of three terms and computed at the
embedding level on Z, Z' and Z,. For a batch of size N, we denote
Z = z1,...,2N], with z € RP and D the expander dimension.

The proposed consistency term seeks to generate new virtual
domains. A linear interpolations of feature vectors should lead to
linear interpolations of their corresponding domain. Therefore the
proposed loss aims at minimzing the distance between the embed-
ding vector of X and the linear combination of embeddings of X
and X'

N
1
(20, 2,2 0) = ;llzx,i = Qa1 =N2) O
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Figure 1: DG-Mix : Self-Supervised Framework for Domain Generalization

The second loss term forces the variance inside each batch to
be equal to 1, preventing a mode collapse:

w(Z) = % > maz(0,1 - 5(=1) @

where 27 is the j'* row of the matrix Z in the batch, and
S(z) = y/Var(z) is the standard deviation.

Finally, the last loss term aims to learn uncorrelated features for
each embedding, by forcing the off-diagonal elements to be zero,
resulting in a rich embedding. The covariance matrix is defined as:

N
1 _ .
CD)=w— ;(z -2)(z—2)7 3)
with Z = % Ziv:l z; representing the mean embedding over a
mini-batch.

1
olz) = L o, @
i#]
The final loss used to train the model is:

v8(Zx, Z, 2", \) + p(v(Z) + v(Z")) + v(c(Z) + c(Z'))  (5)

v, W, v are hyper-parameters that we set in this report to 25, 25, 1 re-
spectively. The networks are trained using the Large Batch Training
of Convolutional Networks (LARS) [18] optimizer, with a learning
rate of 0.8, weight decay of 10™* and a batch size of 1024 for 100
epochs. In addition, ten warmup epochs were used, and the learn-
ing rate followed a cosine decay schedule starting from O and fin-
ishing at 0.002. The expander size and the hyperparameters were
not finetuned on the task but rather taken as reported in the VICReg
paper. After the pre-training, only the encoder model was used for
the downstream classification task presented in the next section.

3.4. Fine-tuning on Section ID Classification

Similar to the baseline method, our proposed model is fine-tuned to
identify the section ID of an audio sample.

The pre-trained encoder is used, and a classifier composed of
two fully connected layers (320-128-6) is added. To improve the
robustness of the model, a mixup strategy on the source and target
data for each section is used to generate augmented data of intra-
domain and inter-domain samples.

The KL-divergence loss between the classifier output and the
mixed section ID is used for this task along with the geometrical

constraint presented in equation 1 as a regularization term. How-
ever, this time it is directly applied to the encoder. Finally, the net-
works are fine-tuned using AdamW [19] optimizer, with a learning
rate of 10~ %, weight decay of 10™*, and a batch size of 64.

3.5. Anomaly Detection

After the fine-tuning step, we apply a k-NN algorithm [12] to com-
pute the anomaly score. We use the mean embedding vector from
the 10-s audio recording as input feature to the k-NN algorithm.

We used the Euclidean metric as the anomaly score, and the
number of nearest neighbors was set to 1. In other words, the larger
the distance from the training embeddings, the more abnormal the
sample is.

4. RESULTS

We tested our model on the development set of the DCASE 2022
Task 2 described in section 2. We first present how our proposed
method without pre-training already outperforms the baseline. The
main differences between the baseline and our proposed method
are (1) change of the CNN, (2) use of Mixup for data augmentation,
(3) addition of a regularization term from the Mixup transforma-
tion, and (4) use of k-NN for anomaly score computation. Table
2 displays the harmonic means of the AUC Source, AUC Target,
and pAUC computed over all three sections for each machine type
using the baselines and the proposed method without pre-training.
The harmonic means of the AUC Source, AUC Target, and pAUC
are also reported for each method.An absolute improvement of more
than 10% of the baseline approach is obtained.

The importance of pre-training becomes apparent from the
results reported in Table 3 where the performance of two self-
supervised approaches, VICReg using SpecAugment [20] and the
proposed DG-Mix method is compared. Moreover, we use the
SpecAugment procedure for VICReg because Mixup is not adapted
for this method. VICReg provides an improvement of almost 1%
in terms of the overall harmonic mean and DG-Mix has a perfor-
mance gain of 4%, suggesting that they both successfully helped to
get better and more robust representations.

Pre-training with DG-Mix outperforms by 3% the pre-training
obtained using VICReg. This is due to Mixup and its regulariza-
tion term that provide a richer representation of the dataset. This is
illustrated in Figures 2a and 2b presenting the t-SNE [21] plots of
the embeddings obtained from a ToyCar training sample with DG-
Mix and VICReg. There are more clusters with DG-Mix, showing
more granularity and a better separation of the dataset into different
modalities.
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Baseline MobileNet-V2 Proposed anomaly detection method without pre-training

Machine | AUC Source | AUC Target | pAUC | Harmonic Mean | AUC Source | AUC Target | pAUC | Harmonic Mean
ToyCar 58,97 52,26 52,39 54,37 79,82 73,62 60,11 70,18
ToyTrain 58,59 46,07 51,56 51,57 46,45 61,25 51,43 52,36
Bearing 62,88 61,81 57,35 60,58 59,24 69,06 50,13 58,47
Fan 71,35 48,53 57,10 57,54 88,85 70,27 69,45 75,22
Gearbox 69,98 56,60 56,18 60,29 79,83 70,32 60,78 69,44
Slider 66,03 40,72 54,77 51,76 90,70 66,02 64,89 72,15
Valve 67,75 58,01 62,70 62,57 71,74 65,99 59,05 65,18
Overall 64.73 51.06 55.80 56.65 72.71 70.93 62.27 68.32

Table 2: Results for the MobileNet-V2 baseline and our proposed anomaly detection method without pre-training (in %).

VICReg with SpecAugment DG-Mix
Machine | AUC Source | AUC Target | pAUC | Harmonic Mean | AUC Source | AUC Target | pAUC | Harmonic Mean
ToyCar 85.09 78,68 59,05 72.47 93.28 81.73 68.32 79.80
ToyTrain 48,34 56,20 53,69 52,54 52.50 55.48 53.20 53.70
Bearing 77,99 70,49 73,22 73,77 66.99 82.90 64.75 70.70
Fan 83,83 77,17 65,93 74,9 83.37 76.73 70.74 76.60
Gearbox 94,99 68,77 68,30 75,55 88.96 82.74 71.22 80.28
Slider 94,99 68,74 68,25 75,51 94.52 67.35 68.91 75.11
Valve 75,02 66,48 60,60 66,86 85.09 81.93 71.65 79.13
Overall 76.44 68.78 63.53 69.18 77.55 74.08 66.33 72.34
Table 3: Results obtained when pre-training with VICReg compared to DG-Mix (in %).
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(a) t-SNE plot of the embedding result when Pre-training with DG-Mix

However, SpecAugment is less suited than Mixup for anomaly
detection because it uses time warping, frequency masking, and
time masking transformations that can interfere with the anomaly
patterns. In contrast, Mixup does not assume anything about possi-
ble anomalies but only mixes samples. Using Mixup between and
across multiple domains [22] allows us to sample the augmented
training data from the heterogeneous Mixup distribution and get a
more robust feature extractor at the end, which improves the results.

5. CONCLUSION

In this paper, we proposed a novel sound anomaly detection frame-
work for domain generalization composed of a self-supervised al-
gorithm followed by a supervised task using Mixup on the input

T-SNE dimension 2
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(b) t-SNE plot of the embedding result when Pre-training with VICReg

log-Mel spectrograms. In this work, our goal was to develop a uni-
fied framework that is robust and performs well across all machine
types. We used the same hyperparameters for each machine type to
achieve this goal. Experimental evaluation shows that the proposed
approach significantly outperforms all baseline approaches. In ad-
dition, we demonstrated that pre-training an encoder improved the
generalization ability of this encoder. Extending the framework to
other tasks and datasets is left for future research.
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