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ABSTRACT

This report presents the Sony-TAu Realistic Spatial Soundscapes
2022 (STARS22) dataset of spatial recordings of real sound scenes
collected in various interiors at two different sites. The dataset is
captured with a high resolution spherical microphone array and de-
livered in two 4-channel formats, first-order Ambisonics and tetra-
hedral microphone array. Sound events belonging to 13 target
classes are annotated both temporally and spatially through a com-
bination of human annotation and optical tracking. STARSS22
serves as the development and evaluation dataset for Task 3 (Sound
Event Localization and Detection) of the DCASE2022 Challenge
and it introduces significant new challenges with regard to the pre-
vious iterations, which were based on synthetic data. Addition-
ally, the report introduces the baseline system that accompanies the
dataset with emphasis on its differences to the baseline of the previ-
ous challenge. Baseline results indicate that with a suitable training
strategy a reasonable detection and localization performance can be
achieved on real sound scene recordings. The dataset is available in
https://zenodo.org/record/6600531.

Index Terms— Sound event localization and detection, sound
source localization, acoustic scene analysis, microphone arrays

1. INTRODUCTION

Sound event localization and detection (SELD) refers to the task
of simultaneously detecting the presence and tracking the location
of sound types of interest over time. It relates strongly to the
more established tasks of sound event detection (SED) and sound
source localization (SSL) but it adds spatial information to the first
and semantic information to the second. The SELD task has re-
cently seen increased research interest in part due to its introduc-
tion to the DCASE Challenge in 2019 [1]. The challenge dataset
was generated with a collection of spatial room impulse responses
(SRIRs) from 5 spaces and multiple source positions, convolved
with dry isolated sound event recordings [2]. The next iteration of
DCASE2020 increased the dataset diversity by including SRIRs of
10 additional rooms with stronger reverberation and, more impor-
tantly, by emulating dynamic scenes with both moving and static
sound sources [3], while the DCASE2021 dataset introduced addi-
tionally directional interfering events out of the target classes [4].

The three SELD datasets of DCASE2019-2021 contributed to
the continuous development and improvement of SELD methods
by aiming to emulate accurately spatial and acoustical properties of
sound scenes and to increase gradually scene complexity towards
more realistic conditions. However, there are certain limitations
inherent to generating synthetic mixtures. One such limitation is

the random presence of target classes and the random sequencing
of sound events, discarding natural temporal occurrences or co-
occurrences of certain sounds in a real scene. Another limitation
is the randomized spatial distribution of sound events ignoring their
spatial constraints and connections in a scene. To overcome such
limitations, SELD systems should transition to training and evalu-
ation with recordings of real sound scenes. Such datasets require
strong event labels provided by human annotators and simultaneous
spatial annotations provided by some form of automated tracking.
Due to the required annotation effort and complexity, there are no
published SELD datasets we know of except for the SECL-UMons
one in [5], capturing natural sound events of 11 classes occuring
at pre-defined locations in two spaces. However, even though the
events have a natural spatial distribution, the dataset is limited to
single event recordings in isolation or to combinations of two simul-
taneous events, ignoring spatio-temporal information linking events
in a natural scene. A few more synthetic SELD datasets exist with
the same limitations as the DCASE datasets, based on captured
SRIRs and targeting certain applications, such as wearable arrays
[6] or positional localization in a room with distributed arrays [7].

This report presents the first SELD dataset we are aware of
where realistic scenes, loosely acted by multiple actors, are cap-
tured and annotated with strong labels temporally and spatially. The
challenges of such annotations are dealt with a combination of hu-
man listening and optical tracking, employing multiple sensors and
modalities. Since the sound scenes are acted naturally, the dataset
overcomes the limitations of synthetic datasets discussed earlier.
Target sound classes are not combined randomly but are instead
constrained by the environment and the participants, while the pres-
ence of each class is determined by the natural composition of each
scene. Causal and sequential occurrences of sound events, as well
as co-occurrences, follow the actions of the actors and their inter-
actions with the environment. The same holds for the location of
events and their trajectories in case they are moving; their spatial
distributions are naturally constrained by the type of event, while
event trajectories can reveal scene information on the agents and
their actions. Hence, the dataset opens certain new possibilities for
SELD systems apart from evaluation in realistic scenarios.

The STARSS22 dataset serves as the development and evalua-
tion dataset of DCASE2022 Task 3, and it is followed by a suitable
baseline and evaluation setup. Changes with respect to the previous
DCASE challenges are elaborated. Since the duration of the dataset
is limited compared to the synthetic datasets used in previous years,
use of external data is allowed in this iteration to improve model
training and generalization. An example strategy based on addi-
tional synthetic data is presented for the baseline. Finally, results
are presented on the development and evaluation set.
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2. DATASET

The Sony-TAu Realistic Spatial Soundscapes 2022 (STARSS22)
dataset consists of recordings of real scenes captured with a high
channel-count spherical microphone array (SMA). The recordings
are conducted by two different teams at two different sites, Tam-
pere University facilities in Tampere, Finland, and Sony facilities
in Tokyo, Japan. Recordings at both sites share the same capturing
and annotation process, organized in sessions corresponding to dis-
tinct rooms, human participants, and sound making props with a few
exceptions. In each session, various clips are recorded with combi-
nations of that session’s participants acting some simple scenes and
interacting between them and with the sound props. The scenes are
not strongly scripted; they are based on generic instructions on the
desired sound events and are otherwise improvised by the partici-
pants. The instructions serve as a rough guide to ensure adequate
event activity and occurrences of the target sound classes in a clip.

Similarly to the previous challenges, the recordings are con-
verted to two 4-channel spatial formats: first-order Ambisonics
(FOA) and tetrahedral microphone array (MIC), both derived from
the original 32-channel recordings. Conversion of the Eigenmike
recordings to FOA following the SN3D normalization scheme (or
ambiX) was performed with measurement-based filters according
to [8]. Regarding the MIC format, channels 6, 10, 26, and 22 of
the Eigenmike were selected, corresponding to a nearly tetrahedral
arrangement. Analytical expressions of the directional responses of
each format can be found in the DCASE2020 challenge report [3].
Finally, the converted recordings were downsampled to 24kHz.

The dataset is split into a development set (dev-set) and eval-
uation set (eval-set). The development set totals about 4 hrs 52
mins, of which 70 recording clips amounting to about 2 hrs are
recorded in 4 different rooms in Tokyo and 51 recordings amount-
ing to about 3 hrs are recorded in 7 different rooms in Tampere. To
aid the development process, the development set is further split
into a training part (dev-set-train, 40+27 clips in 2+4 rooms in
Tokyo+Tampere) and a testing part (dev-set-test, 30+24 clips in 2+3
rooms in Tokyo+Tampere). The evaluation set is close to 2 hrs,
recorded in 2 different rooms in Tokyo (35 clips) and in 3 different
rooms in Tampere (17 clips).

2.1. Recording setup and process

Each scene was captured with 4 types of sensors: a) a high resolu-
tion 32-channel SMA (Eigenmike em321) recording the main multi-
channel audio for the challenge, b) a 360◦camera (Ricoh Theta V2)
mounted about 10 cm above the SMA, c) a motion capture (mocap)
system of infrared cameras surrounding the scene, tracking reflec-
tive markers mounted on the main actors and sound sources of inter-
est (Optitrack Flex 133), and d) wireless microphones mounted on
the same tracked actors and sound sources, providing close-miked
recordings of the main sound events (Røde Wireless Go II4). For
each recording session, a suitable position of the Eigenmike and
Ricoh Theta V was determined in order to cover the scene from a
central position, while taking into account the intended scenarios
and the specific room constraints. The origin of the mocap system
was then set at ground level on the same position and the height
of the Eigenmike was set at 1.5 m, while the mocap cameras were

1https://mhacoustics.com/products#eigenmike1
2https://theta360.com/en/about/theta/v.html
3https://optitrack.com/cameras/flex-13/
4https://rode.com/en/microphones/wireless/wirelessgoii

Target Class Related Audioset subclasses
Telephone Telephone bell ringing, Ringtone (no

musical ringtones)
Domestic sounds Vacuum cleaner, Mechanical fan, Boil-

ing (produced by hoover, air circulator,
water boiler)

Door, open or close Combination of Door & Cupboard,
open or close

Music Background music & Pop music,
(played by a loudspeaker in the room)

Musical instrument Acoustic guitar, Marimba, Xylophone,
Cowbell, Piano, Rattle (instrument)

Bell Combination of sounds from hotel bell
and glass bell, closer to Bicycle bell &
single Chime

Table 1: Relation of target classes to specific Audioset classes. Tar-
get classes not included in the table have an one-to-one relationship
with the similarly named Audioset ones.

positioned at the boundaries of the room. Tracking markers were
mounted to independent sound sources (such as next to the water
sink, on a mobile phone on a table, on a hoover, or next to a guitar’s
soundhole). Head markers were additionally provided to the par-
ticipants before each scene recording, in the form of headbands or
hats. Tracking the head served as the reference point for all human
made sounds. Mouth position for speech and laughter sounds, feet
stepping position for footstep sounds, and hand position for clap-
ping sounds were each approximated with a fixed translation from
the head-tracking center close to the top of the head. Regarding
clapping, participants were instructed to clap about 20 cm in front
of their face to improve the position approximation. Head rotations
were also logged during the scene with respect to the global coordi-
nate frame of the mocap system. Finally, the wireless microphones
were mounted to the lapel of each actor and to additional indepen-
dent sound sources. A clapper sound was used to initiate the acting
and to serve as a reference signal for synchronization between the
different types of recordings.

2.2. Annotation process

Spatiotemporal annotations of the sound events were conducted
manually by the authors and research assistants. Three types of
information were required in order to obtain such annotations: a)
the subset of the target classes that were active in each scene, b)
the temporal activity of such class instances, and c) the position of
each such instance when active. (a) was observed and logged dur-
ing each scene recording. (b) was manually annotated by listening
to the wireless microphone recordings. Since each such microphone
would capture prominently sounds produced by the human actor or
source it was assigned to, onset, offsets, source, and class infor-
mation of each event could be conveniently extracted. In scenes
or instances where associating an event to a source was ambiguous
purely by listening, annotators would consult the video recordings
to establish the correct association. The temporal annotation reso-
lution was set to 100 msec.

After onset, offset, and class information of events was estab-
lished for each source and actor in the scene, the positional annota-
tions (c) were extracted for each such event by masking the tracker
data with the temporal activity window of the event. Additionally,
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Global Fem.
speech

Male
speech Clap Phone Laugh Dom.

sounds Footsteps Door Music Music.
instr. Faucet Bell Knock

Frame coverage
(% total frames) 84.7 20.4 37.6 0.7 1.4 2.7 17.9 1.3 0.6 29.4 4.0 1.7 1.5 0.1

Max. polyphony 5 2 3 2 1 4 1 1 1 1 4 1 1 1
Mean polyphony 1.5 1.04 1.07 1.17 1.00 1.18 1.00 1.00 1.00 1.00 1.86 1.00 1.00 1.00
Polyphony 1
(% active frames) 61.5 96.1 93.3 83.4 100 84.0 100 100 100 100 52.2 100 100 100

Polyphony 2 29.55 3.9 6.5 16.6 0 14.5 0 0 0 0 16.6 0 0 0
Polyphony 3 7.15 0 0.2 0 0 1.1 0 0 0 0 24.2 0 0 0
Polyphony 4 1.6 0 0 0 0 0.4 0 0 0 0 7.0 0 0 0
Polyphony 5 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Dataset class activity information. The mean polyphony is computed over active frames only having one or more events present.

class-specific translations to the tracking data were applied if neces-
sary, as mentioned earlier for most human made sounds. Positional
information was logged in Cartesian coordinates with respect to the
mocap system’s origin and subsequently converted to directions-
of-arrival with respect to the center of the Eigenmike. Finally, the
class, temporal, and spatial annotations were combined and con-
verted to the text format used in the previous DCASE2019-2021
challenges. Validation of the annotations was performed by observ-
ing and listening to the 360◦ videos, overlaid with labeled markers
positioned at the DOAs of the annotated events on the 360◦ video
plane.

2.3. Target sound classes

A set of 13 target sound classes are selected to be annotated,
based on the sound events captured prominently in the recorded
scenes. The class labels are selected to conform to the Audioset
ontology [9] and they are: female speech/woman speaking, male
speech/man speaking, clapping, telephone, laughter, domestic
sounds, walk/footsteps, door open or close, music, musical instru-
ment, water tap/faucet, bell, knock. Since some of these labels cor-
respond to superclasses with a large diversity of sounds and number
of subclasses in the ontology (e.g. domestic sounds or musical in-
strument) we provide some additional information on the subset of
sounds encountered in the recordings for some of the target classes,
in the form of more specific audioset-related labels. This informa-
tion is summarized in Table 1 and it can aid training and testing
of methods. Certain directional sound events in the recordings are
not annotated and are treated as directional interferers; examples
include computer keyboard, shuffling cards, and dishes, pots, and
pans. Additionally, there is natural background noise in all record-
ings, mostly HVAC-related, ranging from low to considerable lev-
els. Based on the annotations, information on the percentage of
frames that each class is active and the degree of polyphony glob-
ally and of each class separately is presented in Table 2.

3. BASELINE

3.1. Model architecture

The baseline of the DCASE2022 Task 3 challenge is similar to the
one used in used in DCASE2021; a SELDnet-inspired CRNN ar-
chitecture [10] improved with the ACCDOA output representation
and loss [11]. However, due to the inability of the original ACC-
DOA representation to handle co-occuring events of the same class,
the baseline adopts the recent multi-ACCDOA (mACCDOA) exten-
sion [12]. The mACCDOA model receives a sequence of T STFT
frames of multichannel features and outputs T/5 × N × C × 3

vector coordinates, where C is the number of target classes and N
the maximum assumed number of co-occuring events in the record-
ings. For the current baseline N is set to 3 maximum simultaneous
sources, while a value of 0.5 is used as the threshold on the length
of the output vectors to indicate track and class activity. Note that
a reduction of the STFT temporal resolution by a factor of 5 is per-
formed to match the resolution of the annotations at every 100 msec.

Input features remain similar to the previous challenge [3];
namely, 4 channel 64-band log-mel spectrograms combined with
acoustic intensity vectors for the FOA format or combined with
generalized cross-correlation (GCC) sequences for the MIC format,
following [13]. Additionally, the option of the SALSA-lite spatial
features for the MIC format is added in the current baseline, re-
cently shown to offer better performance than GCC in multi-source
scenarios [14]. In this case, the original STFT spectrograms and the
SALSA-lite features are truncated to include bins up to about 9 kHz,
without mel-band aggregation, following [14]. A block diagram of
the model architecture is presented in Fig. 1.

3.2. Model training

The baseline model is trained and evaluated twice: firstly only on
the development set reporting baseline results for the participants
to compare against during development. Secondly, it is trained on
the development set and tested on the evaluation set, with results
reported after the completion of the evaluation phase of the chal-
lenge. Since, the amount of training material is insufficient for the
complexity of the task, additional material is synthesized for train-
ing. Those synthetic mixtures are generated with the same gener-
ation method and SRIRs as the DCASE2020-2021 datasets [3, 4].
1200 one-minute spatial mixtures are synthesized (synth-set) using
measured SRIRs from 9 rooms in TAU and sound event samples
sourced from FSD50K [15]. The samples are chosen to match the
target classes on the basis of their annotated labels which follow the
Audioset ontology. The synthetic mixtures are made publicly avail-
able for reproducibility5 along with the list of the selected FSD50K
sound samples. Additionally, the SRIRs are also publicly shared6

along with the scene generation code7, so that participants can gen-
erate their own synthetic mixtures for training following the same
process if desired. The sets and splits for training and testing of the
baseline for each phase are summarized in Table 3.

5https://doi.org/10.5281/zenodo.6406873
6https://doi.org/10.5281/zenodo.6408611
7https://github.com/danielkrause/

DCASE2022-data-generator
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T/5 x 3*3*C

128, GRU, tanh, bi-directional

128, GRU, tanh, bi-directional

Input multichannel audio

Feature extractor
FOA: 64-band [mel energies (4 channels) + Intensity vector (3 channels)]

or
MIC-GCC: 64-band [mel energies (4 channels) + GCC-PHAT (6 channels)]

or
MIC-SALSA: 382-bin [spectral energies (4 channels) + SALSA-lite (3 channels)]

64, 3x3 filters, 2D CNN, ReLUs
 5 x 4 max pool 

64, 3x3 filters, 2D CNN, ReLUs
 1 x 4 max pool 

64, 3x3 filters, 2D CNN, ReLUs
 1 x 2 max pool 

FOA: 7xTx64 or MIC-GCC: 10xTx64 
or MIC-SALSA: 7xTx382

Sound event detection (SED)

T/5 x 128

T/5 x 128
128, fully connected, linear 

3*3*C, fully connected, tanh 

Direction of arrival (DOA) trajectory 
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frame t
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 x
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Multi-ACCDOA: Multi-output regression task

FOA/MIC-GCC: 64xT/5x2 or MIC-SALSA: 64xT/5x11
Reshaped to 

FOA/MIC-GCC: T/5x128 or MIC-SALSA: T/5x704

Figure 1: Baseline CRNN model with mACCDOA output.

4. EVALUATION

Intermediate development set results are reported by the participants
in the development set, while evaluation set results are computed by
the organizers based on the submitted system outputs on the unseen
evaluation set. Contrary to the previous challenges, participants are
allowed to use external data during training, such as sample banks of
sound events, room simulators, SRIR databases, spatial background
noise recordings, pre-trained networks, and others. Generating the
synth-set dataset to improve the baseline performance constitutes
just one such example of external data usage.

The submissions are evaluated with the joint localization-
detection metrics studied in [16, 1] and introduced first-time
in DCASE2020. These are the location-dependent error rate
(ER20◦ ) and F1-score (F20◦ ) for a spatial threshold 20◦ and the
class-dependent localizastion error (LECD) and localization recall
(LRCD). Contrary to the previous challenges, in which F20◦ was
micro-averaged, in this challenge evaluation is based on macro-
averaging of F1-score to account better for the imbalanced presence
of the target classes in the dataset.

Phase Training Testing
Development synth-set + dev-set-train dev-set-test
Evaluation synth-set + dev-set-train + dev-set-test eval-set

Table 3: Datasets & splits used for baseline training and evaluation.

ER20◦ ↓ F20◦ ↑ F20◦ ↑ LECD ↓ LRCD ↑
(macro) (micro)

Development set
FOA-real 0.78 0.11 - 64.1◦ 0.24
FOA-mixed 0.71 0.21 0.36 29.3◦ 0.46
MIC-mixed 0.71 0.18 0.36 32.2◦ 0.47
Evaluation set
FOA-mixed 0.61 0.24 0.39 22.9◦ 0.51
MIC-mixed 0.61 0.22 0.41 25.9◦ 0.48

Table 4: Baseline results on development and evaluation set. FOA-
real refers to training only on the development set of STARSS22,
FOA/MIC-mixed refers to training using additionally synthetic data.

4.1. Results

Results of the baseline on the development and evaluation set are
presented on Table 4, for both FOA and MIC formats. The base-
line was trained as indicated in Sec. 3.2 using the additional syn-
thetic spatial mixtures of synth-set. For comparison purposes, an
example of the model with FOA input trained only with real record-
ings is also reported (FOA-real), with the training and testing splits
of Table 3 excluding the synthetic data (synth-set). It can be seen
that the performance is very low in this case, at least without using
data augmentation strategies. Two training strategies were tested
with regards to incorporating the synthetic data. The first was based
on initial training of the model on the synthetic data, followed by
fine-tuning with the development dataset. The second simply mixed
both the synthetic and the development recordings and trained with
the combined dataset. Better results were obtained with the mixed
strategy and these are the ones presented here (FOA/MIC-mixed).
It is noted that the SRIRs used for the generation of synth-set were
captured in TAU spaces that were different than the ones were the
scene recordings of the STARS22 dataset occurred. Regarding the
MIC format, both the GCC features and the SALSA-lite features
were tested. Slightly better results were obtained with the GCC fea-
tures and reported here. That may be attributed to the fact that even
though the SALSA-lite features show a clear advantage for densely
populated multi-source scenes such as the ones in DCASE2021
dataset [14], for the more sparse scenes of STARSS22 that advan-
tage may be diminished. Finally, both the micro and macro versions
of the F1-score are presented here, with a clear drop in performance
in the macro version, as expected with a dataset of such unbalanced
presence of target classes (evident in Table 2).

5. CONCLUSIONS

This report presents the specifications of the STARS22 dataset, in-
tended for evaluation of SELD systems in challenging real condi-
tions with a natural composition of sound events. The dataset serves
as the development and evaluation dataset of the SELD challenge of
DCASE2022 and it is accompanied by a baseline model which, with
use of external data and a suitable training strategy, can achieve a
reasonable performance on the evaluation dataset.
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