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ABSTRACT

The absence of large labeled datasets remains a significant chal-
lenge in many application areas of deep learning. Researchers and
practitioners typically resort to transfer learning and data augmen-
tation to alleviate this issue. We study these strategies in the con-
text of audio retrieval with natural language queries (Task 6b of the
DCASE 2022 Challenge). Our proposed system uses pretrained em-
bedding models to project recordings and textual descriptions into
a shared audio-caption space in which related examples from dif-
ferent modalities are close. We employ various data augmentation
techniques on audio and text inputs and systematically tune their
corresponding hyperparameters with sequential model-based opti-
mization. Our results show that the used augmentations strategies
reduce overfitting and improve retrieval performance.

Index Terms— Language-based Audio Retrieval, Transfer
Learning, Audio Augmentation, Text Augmentation

1. INTRODUCTION

Natural-language-based audio retrieval is concerned with ranking
audio recordings depending on their content’s similarity to textual
descriptions. Retrieval tasks like this are typically solved by con-
verting recordings and textual descriptions into high-level repre-
sentations and then aligning them in a shared audio-caption space;
ranking can then be done based on the distance between embed-
dings. These systems’ retrieval performance highly depends on
the quality of the audio and text embedding models, which must
extract features that accurately and discriminatively represent the
high-level content. Current state-of-the-art approaches [1, 2, 3] cre-
ate such feature extractors by training models with millions of pa-
rameters directly from raw input features, i.e., deep learning. These
large embedding models require a large number of training exam-
ples, such as the 400 million image-text pairs used to train CLIP [4],
a cutting-edge image-retrieval model. However, publicly available
audio-caption datasets like Clotho and AudioCaps are significantly
smaller. This work showcases how to use off-the-shelf pretrained
audio and text neural networks to create a state-of-the-art retrieval
model under this limiting condition. We evaluate our approach in
the context of task 6b1 of the 2022’s DCASE Challenge [5], which is
concerned with audio retrieval from natural language descriptions.
We demonstrate how an already well-performing baseline model
can be further improved by using a range of audio and text augmen-
tation methods and pretraining on AudioSet.

1https://dcase.community/challenge2022/
task-language-based-audio-retrieval
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Figure 1: The proposed audio-retrieval system in a nutshell: Audio
and descriptions are transformed into the shared audio-caption em-
bedding space via the audio and description embedding models ϕa

and ϕc, respectively. The contrastive loss maximizes the similari-
ties between matching pairs.

2. RELATED WORK

The idea of aligning text and audio features for content-based re-
trieval is not new: Early audio retrieval methods connected bag-of-
words text queries and MFCC features via density or discrimina-
tive models [6]. However, the handcrafted features and the rela-
tively small vocabulary limited these methods’ performance. Cur-
rent methods build on top of learnable feature extractors that pro-
duce high-level audio and text representations from raw input fea-
tures. Xie et al. [2], for example, used a convolutional recur-
rent neural network to extract frame-wise acoustic embeddings and
aligned those to Word2Vec features via a linear transformation. Re-
cently, language-based audio retrieval has received increased atten-
tion due to the newly introduced task 6b in the 2022’s DCASE
challenge [5]. The task’s objective was to create a retrieval system
that takes natural-language queries as input and retrieves the ten
best-matching recordings from a test set. The top ranking systems
among the nine submitted ones leveraged large pretrained audio and
text embedding models like CNN14 [7] and BERT [8], respectively.
While most systems applied SpecAugment [9], other data augmen-
tation methods, especially text augmentations, have received little
to no attention. We address this paucity and study a range of audio
and text augmentation methods in the context of audio retrieval.

https://dcase.community/challenge2022/task-language-based-audio-retrieval
https://dcase.community/challenge2022/task-language-based-audio-retrieval
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Figure 2: Overview of the audio augmentation pipeline.

Augmentation Caption

Original The rain pours down.
Back Translation It rains cats and dogs.
Insert It tree rains cats and dogs.
Delete It rains cats and dogs.
Swap It and cats rains dogs.
Synonym It drizzles cats and dogs.

Table 1: Overview of the text augmentation pipeline

3. RETRIEVAL SYSTEM

Our model uses separate audio and caption embedding networks
ϕa(·) and ϕc(·) to embed tuples of spectrograms and descriptions
{(ai, ci)}Ni=1 into a shared D-dimensional space in a manner that
representations of matching audio-caption pairs are close. This be-
havior is achieved by contrastive training, which equalizes the em-
beddings of matching audio-caption pairs (ai, ci), while pushing
the representations of mismatching pairs (ai, cj;j ̸=i) apart. The
agreement between audio ai and description cj is estimated via the
normalized dot product in the shared embedding space:

Cij =
ϕa(ai)

T · ϕc(cj)

∥ϕa(ai)∥2 ∥ϕt(cj)∥2

The similarity matrix C ∈ RN×N holds the agreement of matching
pairs on the diagonal and the agreement of mismatching pairs off-
diagonal. We train the system using the NT-Xent [10] loss, which
is defined as the average Cross Entropy (CE) loss over the audio
and text dimension; the ground truth is given by the identity matrix
I ∈ RN×N :

L =
1

2 ·N

N∑
i=1

CE(Ci∗, Ii∗) + CE(C∗i, I∗i)

4. AUDIO AUGMENTATIONS

To reduce overfitting of the audio embedding model and improve
generalization, we employ three regularization techniques during
training: Gain augmentation, MixStyle [11] along the frequency
dimension (Freq-MixStype), and SpecAugment [9]. Figure 2 gives
an overview of the audio augmentation pipeline.

Gain Augmentation tries to make the model invariant changes
in volume by randomly altering the loudness of the raw audio input
signal. Volume manipulations are done by multiplying the wave-
form with factor W :

w = 10(g/20)

The change in volume (in dB) is controlled with hyperparameter
g; its value is randomly drawn from a uniform distribution in the
range [−gmax, gmax].

SpecAugment [9] randomly masks time and frequency stripes
in the input spectrogram, thereby reducing the audio embedding
model’s reliance on specific input patterns. The number of stripes
along the time and frequency dimensions is controlled via hyper-
parameters nf and nt, respectively. Parameters wf and wt control
the maximum width of the time and frequency stripes, respectively.

The actual width and the offset of the stripes are chosen from a
uniform distribution; masked values are replaced with zeros. We
omitted the warping transformation proposed in the original work
as it is computationally expensive and reportedly only lead to
marginal improvements.

Freq-MixStyle [11] aims to transfer device-style character-
istics between recordings by exchanging statistics along the fre-
quency dimension of spectrograms. To this end, the original spec-
trogram is first normalized to zero mean unit variance along the
frequency dimension and then un-normalized with adjusted mean
and standard deviation statistics. The adjusted statistics are a con-
vex combination of the original statistics (µi, σ−i) and the statistic
of a randomly selected spectrogram (µj , σj):

µnew = λµi + (1− λ)µj

σnew = λσi + (1− λ)σj

The coefficient λ is drawn from a symmetric beta distribution in a
manner that the original statistics always receive a higher weight:

λ ∼ Beta(α, α)

α controls the shape of the Beta distribution. Freq-MixStyle is ap-
plied to each input example with a probability of pMS.

5. TEXT AUGMENTATIONS

We apply Back Translation [12] and Easy Data Augmentation [13]
(in that order) to reduce overfitting of the sentence embedding
model. Examples of these augmentations are given in Table 1.

Back Translation (BT) [12] introduces variation into the input
sentence without changing its semantics by translating the input
sentence to a foreign language and back to the source language.
We translate the training captions from English to German, French,
or Spanish, and back to English using Google Translate.

Easy Data Augmentation (EDA) [13] chooses one of four
word-level manipulations and applies the selected operation to each
word with a certain probability (indicated in parenthesis): insertion
of a random word (pins), deletion (pdel), swap with another word in
the sentence (pswp), or replacement with a synonym according to
WordNet [14] (psyn). EDA is applied with a probability of pEDA.

6. EXPERIMENTS

We first established a baseline without augmentation and then con-
ducted a series of experiments to investigate the impact of using
pretrained weights for the audio embedding model, augmenting the
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audio and text inputs, and pretraining on AudioCaps. We further
investigate the impact of all augmentation methods separately in an
ablation study. The model architecture and the exact experimental
setup are discussed below.

6.1. Dataset & Input Features

We trained our proposed system on ClothoV2.1 [15], which con-
tains 10-30 second long audio recordings sampled at 32kHz and five
human-generated captions for each recording. We used the train-
ing, validation, and test split into 3839, 1045, and 1045 examples,
respectively, as suggested by the dataset’s creators. To make pro-
cessing in batches easier, we zero-padded all audio snippets to the
maximum audio length in the batch. The resulting waveforms were
converted to 64-bin log-MEL spectrograms using a 1024-point FFT
(32ms) and hop size of 320 (10ms). The audio features were nor-
malized via batch normalization [16] along the frequency dimen-
sion before feeding them into the CNN10 embedding model. The
input sentences were pre-processed by converting all characters to
lowercase and removing punctuation. The resulting strings were to-
kenized with the WordPiece tokenizer [17], padded to the maximum
sequence length in the batch, and truncated to 32 tokens.

6.2. Audio Embedding Model

We used a slightly modified version of the popular CNN10 archi-
tecture [7] to embed spectrograms into the 1024-dimensional audio-
caption space. The architecture is detailed in Table 2. The net-
work aggregates the output after the last convolutional block over
the frequency and time dimensions and transforms the result with
a two-layer neural network. The audio embedding model has ap-
proximately 9 Million parameters. We chose this simple architec-
ture because it allowed us to train on a single customer-grade GPU
with reasonable batch size. For the experiments with pretrained
audio embedding model parameters, we transferred the weights of
the convolutional blocks from a custom pretrained audio tagger and
randomly initialized the fully-connected layers. The data set used
for pretraining the embedding model, AudioSet [18], contains ap-
proximately 2 Million ten-second audio recordings labeled for 527
hierarchically organized classes. We used the pre-defined split of
AudioSet into a large, unbalanced set for training and two smaller,
more balanced sets for validation and testing. Pretraining of the
embedding model was done as described in [7].

CNN10

2× (3× 3)@64, BN, ReLU
Pool (2× 2)

2× (3× 3)@128, BN, ReLU
Pool (2× 2)

2× (3× 3)@256, BN, ReLU
Pool (2× 2)

2× (3× 3)@512, BN, ReLU
Pool (2× 2)

Frequency Pooling (mean)
Time Pooling (average of mean and max )

FC 2048, ReLU
FC 1024

Table 2: The architecture of the audio embedding model (CNN10).

6.3. Text Embedding Model

We used a pretrained BERT model [8] (’bert-base-uncased’) to gen-
erate embeddings for the audio captions. BERT is a bi-directional
self-attention-based sentence encoder that was pretrained on Book-
Corpus [19] and WikiText datasets [20] for masked language mod-
eling and next sentence prediction. The learned semantic repre-
sentations proved effective in multiple downstream tasks. We pro-
jected the output vector that corresponds to the class token into the
shared audio-caption space by using a neural network with one hid-
den layer of size 2048 and ReLu activations. The text embedding
model has approximately 112 Million parameters.

6.4. Training & Evaluation

We train all variants of the proposed system on CLothoV2.1’s train-
ing set, select hyperparameters according to the performance on the
validation set, and report the final results on the test set in section
7. Our main evaluation criterion was the mean Average Precision
among the top-10 results (mAP) because this criterion takes the
rank of the correct recording into account. We also report the re-
call among the top-1, top-5, and top-10 retrieved results. All results
are averaged over three runs. Both embedding models were jointly
optimized using gradient descent with a batch size of 30. We used
the Adam update rule [21] for 50 epochs, set the initial learning rate
to 10−4, and dropped it by a factor of 3 every 10 epochs. The hy-
perparameters of the optimizer were set to PyTorch’s [22] defaults.

6.5. Sequential Model-Based Optimization

We performed sequential model-based optimization (SMBO) in the
hyperparameter space of the audio and text augmentations to op-
timize the mAP-score on the validation set without manual tun-
ing. Sequential Model-based Optimization (SMBO) utilizes the
outcomes of prior experiments to build a surrogate model that es-
timates the relationship between validation-mAP and a given pa-
rameter configuration. Subsequent runs use this surrogate model
to sample hyperparameter configurations from a distribution that
is proportional to the expected mAP improvement. We initialized
SMBO with ten runs using randomly chosen hyperparameters. Af-
ter that, we performed 100 trials with hyperparameters sampled us-
ing the Tree-structured Parzen Estimator algorithm [23]. To reduce
the overall computation time, we stopped runs for which the mAP
on the validation set did not increase for ten consecutive epochs.
Table 4 defines the hyperparameter search space for the SMBO.

7. RESULTS & DISCUSSION

The results of our experiments are summarized in Table 3 and dis-
cussed in the following section.

R@1 R@5 R@10 mAP@10

DCASE baseline 3.50 11.50 19.50 7.50± 0.00
baseline 6.63 20.06 31.52 12.53± 0.08
+ AudioSet pretraining 13.18 35.30 48.61 22.80± 0.29
+ augmentations 14.50 37.24 51.04 24.27± 0.19
+ AudioCaps pretraining 14.34 38.12 52.04 24.57± 0.15

Table 3: Audio retrieval performance of the DCASE baseline and
the custom system in four variants.
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7.1. Baseline

The performance of our custom baseline system, which was trained
with randomly initialized audio embedding model parameters and
without augmentation, is given in Table 3. The resulting system’s
mAP is 5 pp. higher than the mAP of the DCASE baseline system
[5] which we attribute to the more powerful text embedding model
(we used BERT [8] instead of Word2Vec [24]).

7.2. AudioSet Pretraining

Next, we investigated the impact of using pretrained weights to ini-
tialize the audio embedding model. To that end, we retrained our
baseline system but transferred the initial audio embedding model
parameters from a CNN10 pretrained for tagging on AudioSet. The
resulting model is approximately 10 pp. mAP better than the sys-
tem that used randomly initialized weights for the audio encoder.
This confirms that using pretrained audio embedding models is an
effective strategy to alleviate the data scarcity problem.

7.3. Augmentations

We build upon the system that uses the AudioSet pretrained em-
bedding model and perform SMBO to find a good hyperparameter
configuration. The resulting best hyperparameters on the validation
set and the performance on the test set are given in Tables 4 and
3, respectively. The best configuration found suggests that the pa-
rameter which controls the frequency of EDA is superfluous as the
best value is very close to one. Synonym replacement appears ben-
eficial, and future experiments should search for the optimal value
for this parameter in a larger range. The probability of swapping
and inserting random words is close to zero, suggesting that these
two transformations are less beneficial or even detrimental. All in
all, we observed an absolute improvement of approximately 1.5 pp.
mAP when training with text and audio augmentations.

Augmentation Parameter Range best

Te
xt EDA

pEDA [0, 1.0] .9936
psyn [0, 0.3] .2962
pswp [0, 0.3] .0085
pins [0, 0.3] .0269
pdel [0, 0.3] .1944

Backtranslation pbt [0, 1.0] .1812

A
ud

io

SpecAugment

nf {0, 1} 1
wf {1, . . . , 32} 4
nt {0, . . . , 8} 7
wt {1, . . . , 64} 58

Audio Gain gmax {0, . . . , 6} 3

Freq-MixStyle pMS [0, 1.0] .1045
α [0, 1.0] .8286

Table 4: Hyperparameter search space for the sequential model-
based optimization, and the best configuration found.

7.4. AudioCaps Pretraining

We hypothesized that pretraining the retrieval system on additional
audio-caption pairs could further improve audio-retrieval results;
we, therefore, pretrained the system (with AudioSet pretraining and
augmentations) on the 46K training examples in AudioCaps [25].

To this end, we used the same training procedure as described in
Section 6.4 for pretraining and fine-tuning but decreased the initial
learning rate for fine-tuning by a factor of 10. Table 3 gives the
results. Pretraining on AudioCaps resulted only in a marginal im-
provement of 0.3pp mAP, which suggests that using AudioCaps for
transfer learning in this naive way has no significant impact.

7.5. Ablation Study: Augmentations

Based on the previous results, we performed another ablation
study to investigate the effect of the audio and text augmentations.
To that end, we re-trained the system with AudioSet pretraining
and augmentations twice: once without audio augmentations and
once without text augmentations. The results are given in Table
5. Using all augmentations gave the best results. We observed a
drop of 1.1 and 0.5 pp mAP without text and audio augmentations,
respectively. This might indicate that the text augmentations have
a larger impact than the audio augmentations, which might be
caused by the large difference in trainable parameters between the
sentence and audio embedding models.

To isolate the effect of each individual augmentation method,
we further re-trained the system (with AudioSet pretraining and
augmentations) in five variants, always leaving out one of the aug-
mentation methods. The results are summarized in Table 5. The
text augmentations have the largest impact, which is in line with
the previous results: Leaving out EDA and BT reduced the mAP by
1.0 and 0.7 pp., respectively. Eliminating SpecAugment and Freq-
MixStyle reduced the performance by 0.7 and 0.6 pp., respectively.
Gain augmentation seems to have the least impact: eliminating it
reduced the mAP by only 0.2pp.

R@1 R@5 R@10 mAP@10

SMBO 14.50 37.24 51.04 24.27± 0.19

no audio aug 13.88 36.94 51.06 23.74± 0.16
no text aug 13.12 35.77 49.25 22.91± 0.08

no SpeAugment 13.50 36.60 50.91 23.53± 0.20
no FreqMixStyle 13.61 36.91 50.69 23.62± 0.14
no Gain Augment 14.84 37.81 50.95 24.05± 0.26
no BT 13.61 36.38 50.00 23.43± 0.18
no EDA 13.33 37.02 49.94 23.27± 0.03

Table 5: Results of the ablation study on data augmentation.

8. CONCLUSION

This study set out to investigate transfer learning and data augmen-
tation strategies to alleviate the data scarcity problem in natural-
language-based audio retrieval. Our research has shown that using
pretrained audio and text embedding models greatly increases the
retrieval performance on ClothoV2. We enriched this already well-
performing retrieval system with a range of augmentation methods
and showed that augmenting both text and audio inputs significantly
reduces overfitting. Finally, we further found that pretraining on
AudioCaps only leads to non-significant improvements.
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