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ABSTRACT

Continuously learning new classes without catastrophic forgetting is
a challenging problem for on-device environmental sound classifica-
tion given the restrictions on computation resources (e.g., model size,
running memory). To address this issue, we propose a simple and
efficient continual learning method. Our method selects the histori-
cal data for the training by measuring the per-sample classification
uncertainty. Specifically, we measure the uncertainty by observing
how the classification probability of data fluctuates against the paral-
lel perturbations added to the classifier embedding. In this way, the
computation cost can be significantly reduced compared with adding
perturbation to the raw data. Experimental results on the DCASE
2019 Task 1 and ESC-50 dataset show that our proposed method
outperforms baseline continual learning methods on classification
accuracy and computational efficiency, indicating our method can ef-
ficiently and incrementally learn new classes without the catastrophic
forgetting problem for on-device environmental sound classification.

Index Terms— Continual learning, environmental sound classi-
fication, on-device, convolutional neural networks

1. INTRODUCTION

Environmental sound classification aims to categorize audio record-
ings into pre-defined environmental sound classes [1]. Recently,
on-device environmental sound classification [2, 3, 4] has attracted
increasing research interest, as shown in Task 1 of Detection and
Classification of Acoustic Scenes and Events (DCASE) 2022 Chal-
lenge: “Low-Complexity Acoustic Scene Classification” [5]. Such a
sound classification system with low computation-complexity can
be deployed on mobile and embedded platform for many real-world
audio applications, such as acoustic surveillance [6], bio-acoustic
monitoring [7] and multimedia indexing [8].

Most existing environment sound classification models [1, 3, 4,
9, 10] are trained with limited sound classes, which cannot directly
adapt to new sound classes. When model developers want to expand
the categories of environmental sounds to be classified, one way to
do this is to fine-tune the model with new classes of data [11, 12].
However, this method may discard previously learned knowledge
during the fine-tuning process: this is also known as the catastrophic
forgetting problem [13]. Another possible solution is to re-train
sound classification models with a mixture of historical and new
data. However, this method is resource- and time-consuming in
real-world on-device scenarios. As the solution based on re-training
is computationally expensive, it is important to design efficient and
effective methods to adapt the trained on-device sound classification
model to new sound classes.

∗The first two authors contributed equally to this work.

Continual learning (CL) [14, 15, 16] aims to continuously learn
new knowledge over time while retaining and reusing previously
learned knowledge. Existing CL methods can be generally divided
into two categories: regularization-based methods [17, 18] and
replay-based methods [19, 20]. Regularization-based methods use a
regularization loss to preserve previously learned model parameters
when learning new knowledge. Replay-based methods use a memory
update algorithm (MUA) [20, 21, 22] to sample a few informative
examples from historical data. The selected examples are used to
preserve information about old classes when training new classes.
Recently, replay-based CL methods have shown promising results
outperforming regularization-based methods in audio tasks such as
keywords spotting [23, 24] and sound event detection [25]. However,
CL in on-device applications, such as on-device environmental sound
classification, has received less attention in the literature, which is
the focus in this paper. The on-device scenarios are often associated
with restrictions in storage and memory space [3], which can pose
challenges to replay-based CL which relied on external memory to
restore historical data. As a result, the sound classification models
that can be operated on the device may be limited in their capacities,
thus prone to forgetting old knowledge when continuously learning
new sound classes.

In this work, we investigate the replay-based CL (RCL) methods
for on-device environmental sound classification. We first study the
performance of existing memory update algorithm (MUA) methods
such as Reservoir [21], Prototype [20] and Uncertainty [22] (as de-
scribed in Section 2.1) on RCL for on-device environmental sound
classification. We empirically demonstrate that Uncertainty [22]
method performs best in our scenario. Furthermore, we propose
Uncertainty++, a simple yet efficient MUA method based on Uncer-
tainty method. Different to the Uncertainty method, our proposed
Uncertainty++ introduces the perturbations to the embedding layer
of the classifier. As a result, the computation cost (e.g., running
memory and time) can be significantly reduced when measuring
the data uncertainty. We evaluate the performance of our method
on the DCASE 2019 Task1 [26] and the ESC-50 [27] datasets with
on-device model BC-ResNet-Mod (∼86k parameters) [28, 29]. Ex-
perimental results show that uncertainty++ outperforms the existing
MUA methods on classification accuracy, indicating its potential in
real-world on-device audio applications. Our proposed method is
model-independent and simple to apply. Our code is made available
at the GitHub1.

The remainder of this paper is organized as follows. Section 2
introduces the continual learning method we proposed for on-device
environmental sound classification. Section 3 and Section 4 present
the experimental settings and the evaluation results. Conclusions
and future directions are given in Section 5.

1https://github.com/swagshaw/ASC-CL

https://github.com/swagshaw/ASC-CL
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2. METHOD

This section first describes replay-based continual learning and four
memory update algorithms, and then introduces the proposed uncer-
tainty++ algorithm.

2.1. Replay-based continual learning

Following the continual learning setting [14, 18, 25] of environ-
mental sound classification, we assume that the model M should
identify all classes in a series of tasks T = {τ0, . . . , τt} without
catastrophic forgetting. For each task τ ∈ T , we have input pairs
(x, y) and classes C, where x denotes audio waveforms and y are
classes c ∈ C. We aim to minimize a cross-entropy loss of all classes
C present in the current task τ formulated as:

LCE(τ) =
∑
c∈C

yclog
exp(M(x)c)∑

c∈C

exp(M(x)c)
, (1)

Where M(x) denotes the output of the model M for input x.
The parameters learned from the previous task are potentially

overwritten after learning the new class, also known as catastrophic
forgetting. To mitigate this issue, we introduce replay-based methods.
The replay-based methods utilize a region of the memory which is
called ‘replay buffer’ to temporarily store the historical training
samples to maintain the performance.

Re-training sound classification models with the mixture of the
whole historical and new data is resource- and time-consuming in
real-world on-device scenarios. To mitigate this issue, the replay-
based methods access only a subset of the historical data to save the
storage space. In this case, how to select the part of samples to the
replay buffer by the memory update algorithm is the key.

Specifically, in the training of task τt, the replay buffer stores
the selected training samples from the previous t− 1 learned task(s)
{τ0, τ1, . . . , τt−1}, and builds the training data buffer D̂t for task τt
formulated as:

D̂t = g(D̂t−1) ∪Dt, (2)

where g is the memory update algorithm [24], D̂t−1 is the training
data buffer for task τt−1, and Dt is the incoming data for the new
task.

2.1.1. Memory update algorithm (MUA)

We introduce four memory update algorithms in the literature. Gen-
erally, we assume that the memory update should select L samples
from the training data D̂t−1 of the previous task τt−1 for the training
of the task τt.
Random [30] memory update algorithm selects L new samples
{(x1, y1), (x2, y2), . . . , (xL, yL)} for the next task randomly from
the candidates D̂t−1 into replay buffer.
Reservoir [21] memory update algorithm conducts uniform sam-
pling from D̂t−1. Specifically, the reservoir algorithm initializes the
replay buffer indexed from 1 to L, containing the first L items
{(x1, y1), (x2, y2), . . . , (xL, yL)} of the candidates. When up-
dating replay buffer from the candidates, for each sample, the
reservoir algorithm generates a random number m uniformly in
{1, . . . , len(D̂t−1)}. If m ∈ {1, . . . , L}, then the sample with the
index m in the replay buffer is replaced with the sample D̂t−1[m].
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Figure 1: Block diagram of the native uncertainty approach and
our proposed approach. Specifically, the naive approach adds per-
turbations to x by waveform and generates multiple waveform as
x̂. Our approach inputs the embedding e and generates perturbed
embedding ê which means we only save the embedding. The output
of the backbone of the model is calculated only once. “Compute
u(x)” is to compute u(x) by Eq. (3). The K refers to the number of
the perturbations generated by perturb methods.

Prototype [20] memory update algorithm selects the samples from
D̂t−1 where the embedding of the classifier is close to the embedding
mean of its own class. Specifically, the algorithm first groups the
D̂t−1 into subsets as Dc, c = 1 . . . N t by unique classes, where
N t denotes the total numbers of unique classes in the D̂t−1 set.
Then the algorithm uses the current model to extract the embedding
of the candidates for each Dc and calculates the class mean by
the embedding as the average feature vector. For each class, the
algorithm selects the samples of the candidates so that the average
feature vector over the replay buffer provides best approximate to
the average feature vector over all the samples of the corresponding
class.
Uncertainty [22] memory update algorithm selects the sample by
the uncertainty of the sample through the inference by the classi-
fication model. Specifically, the first step groups the D̂t−1 in the
same way as the prototype algorithm introduced above. The second
step estimates the uncertainty of each sample x in Dc. Predictive
likelihood captures how well a model fits the data, with larger values
indicating better model fit. Uncertainty score can be determined
from predictive likelihood [31]. Following the derivation from [31],
the predictive likelihood of a sample given by the model can be
approximated by the Monte-Carlo (MC) integration [32] method
with the model outputs of perturbed samples [24], which is defined
as follows:

P (y = c | x) =
∫

p(y = c | x̂)p(x̂ | x)dx̂, (3)

where x, x̂, y denote an audio utterance of one class, the perturbed
samples of x, and the label of x. Therefore, the uncertainty of the
audio utterance x is formulated as u(x):

u(x) ≈ 1− 1

K

K∑
k=1

P (y = c | x̂k), (4)

where K presents the number of the perturbations generated by per-
turb methods such as Audio Shift [33], Audio PitchShift [33] and
Audio Colored Noise [34, 35]. A larger u(x) indicates a smaller
confidence of the model in predicting the perturbed samples. The
third step selects L examples from Dc through descending the un-
certainty u(x) with the step size of len(Dc) ∗ C/L, where L is the
size of the replay buffer.
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Previous research [24] demonstrated that the uncertainty mem-
ory update algorithm performs better than the other three algorithms
on speech tasks such as keyword spotting. However, the compu-
tation cost of Uncertainty increases linearly with the number of
perturbation operations.

2.2. Proposed MUA method (Uncertainty++)

As illustrated in Figure 1, the native uncertainty memory update
algorithm requires to employ perturbation methods offline for the
waveform of each sample to generate the perturbed samples first.
In our proposed method, noisy perturbations are added to the pre-
classifier embedding of the sample, and not to the waveform, so
the output of the backbone of the model is calculated only once.
Specifically, we propose a vector-wise perturbation method that
adds noise with different intensities according to the variance of
classifier’s embedding. We denote the perturbed version of the
classifier’s embedding e as ê, which is computed as follows:

ê = e+ U(−λ

2
,
λ

2
) ∗ std(e), (5)

where std(·) stands for standard deviation, the function U(a, b)
represents the noise distributed uniformly from a to b, U(a, b) is
a vector with the same shape as e, and λ is a hyperparameter that
controls the relative noise intensity.

By the vector-wise perturbation method, we generate the per-
turbed embedding ê of the embedding e. Finally, we input ê to the
final classification layer of the model and output P (y = c | ê) which
is used to compute the uncertainty as in Eq. (3). After the uncertainty
is estimated, we select examples for replay as native approach. This
method saves time by calculating the output of the backbone of the
model only once. We also save the memory usage by replacing the
perturbed raw data with the classifier’s embedding which is of much
smaller size as compared with the raw data.

3. EXPERIMENTS

3.1. Environmental sound classification model

For the on-device environmental sound classification model, we use
BC-ResNet-Mod [29] which is an adaptation of the BC-ResNet [28]
that achieves improved results on acoustic scene classification. The
BC-ResNet paradigm works via repeatedly extracting spectral and
then temporal features in series. Because these spectral features are
of a lower dimension than the input, this model has fewer parameters
than one that processes the waveform directly. Feature extraction is
channel-wise, and both parameter reductions have negligible impact
on performance [28]. For our experiments, we use BC-ResNet-
Mod-4, which increases the input channel dimension to 80 before
extracting spectral and temporal features.

3.2. Datasets

ESC-50 consists of 2000 five-second environmental audio record-
ings [27]. Data are balanced between 50 classes, with 40 exam-
ples per class, covering animal sounds, natural soundscapes, human
sounds (non-speech), and ambient noises. The dataset has been
prearranged into five folds for cross-validation.
DCASE 2019 Task 1 is an acoustic scene classification task, with a
development set [26] consisting of 10-second audio segments from
10 acoustic scenes: airport, indoor shopping mall, metro station,
pedestrian street, public square, the street with a medium level of

Table 1: Accuracy (ACC) and Backward Transfer (BWT) in a com-
parative study of the proposed memory update algorithm.

Method DCASE 2019 Task 1 ESC-50

ACC ↑ BWT ↑ ACC ↑ BWT ↑
Finetune 0.205 -0.276 0.181 -0.307
Random 0.473 -0.115 0.225 -0.231

Reservoir 0.568 -0.096 0.430 -0.121
Prototype 0.559 -0.089 0.482 -0.104

Uncertainty 0.578 -0.079 0.477 -0.111
Uncertainty++ 0.581 -0.079 0.500 -0.121

traffic, traveling by tram, traveling by bus, traveling by an under-
ground metro and urban park. In the development set, there are 9185
and 4185 audio clips for training and validation, respectively.

3.3. Experimental setup

Task setting To evaluate the performance of the proposed approach,
we split the data into five tasks. Each task includes 2 new unique
classes in DCASE 19 Task 1 and 10 new unique classes in ESC-50,
which is unseen in previous tasks. To simulate the condition of edge
devices, we set the buffer size L of examples as 500, 100 samples in
DCASE 19 Task 1 and ESC-50 due to the memory limitation.
Implementation details The original audio clip is converted to 64-
dimensional log Mel-spectrogram by using the short-time Fourier
transform with a frame size of 1024 samples, a hop size of 320
samples, and a Hanning window. The classification network is
optimized by the Adam [36] algorithm with the learning rate 1 ×
10−3. The batch size is set to 32 and the number of epochs is 50.

3.4. Evaluation metrics

We report performances in terms of the accuracy and forgetting met-
ric. Specifically, the Accuracy (ACC) reports an accuracy averaged
on learned classes after the entire training ends. The Backward
Transfer (BWT) [37] evaluates accuracy changes on all previous
tasks after learning a new task, indicating the forgetting degree. For
measuring BWT, we first construct the matrix R ∈ RT×T , where
Ri,j is the test classification accuracy of the model on task τj after
observing the last sample from task τi. After the model finished
learning about each task τi, we evaluate its BWT on all T tasks,
which is formulated as:

BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i. (6)

There exists negative BWT when learning about some task decreases
the performance on some preceding task. A smaller value of BWT
indicates a higher catastrophic forgetting.

3.5. Reference baselines

We built five baselines for comparisons. The Finetune training strat-
egy adapts the BC-ResNet-Mod model for each new task without any
continual learning strategies, as the lower-bound baseline. The four
prior memory update algorithms of replay-based continual learning
(i.e., Random, Reservoir, Prototype, Uncertainty) are introduced in
Section 2.1. Specifically, at the perturbation stage of the uncertainty,
we use two perturbation methods, namely, ‘uncertainty-shift’, which
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Table 2: Accuracy (ACC) and Backward Transfer (BWT) in a com-
parative study of the proposed perturbation method. The K refers to
the number of the perturbations generated by perturbation methods.

Method K DCASE 2019 Task 1 ESC-50

ACC ↑ BWT ↑ ACC ↑ BWT ↑
2 0.557 -0.101 0.461 -0.111

Uncertainty-Shift 4 0.575 -0.103 0.476 -0.118
6 0.567 -0.079 0.477 -0.118
2 0.560 -0.100 0.465 -0.118

Uncertainty-Noise 4 0.535 -0.104 0.473 -0.118
6 0.578 -0.079 0.458 -0.120
2 0.571 -0.102 0.500 -0.121

Uncertainty++ 4 0.548 -0.103 0.481 -0.114
6 0.581 -0.079 0.484 -0.119

includes Audio Shift and Audio PitchShift, and ‘uncertainty-noise’
which refers to the Audio Colored Noise perturbation method.

4. RESULTS

4.1. Experiments on MUA methods

Table 1 presents the results on DCASE 2019 Task 1 and ESC-50
test set in terms of ACC and BWT. We compare the proposed Un-
certainty++ MUA method with five baselines. We observe that the
uncertainty MUA method achieves better performance than the five
baselines. Comparing with the best baseline uncertainty, we observe
that the proposed uncertainty++ method obtains 58.1% on classifi-
cation accuracy which outperforms the existing MUA methods. In
addition, we observe that the Finetune method achieves the worst
ACC and BWT performance compared with other baselines, which
indicates the issue of catastrophic forgetting.

We further analyze and summarize the performances of the
proposed uncertainty++ method compared with the uncertainty
MUA method with different numbers of the perturbation methods
in terms of ACC and BWT as shown in Table 2. The K refers
to the number of the perturbations generated by perturb methods.
Even with only two perturbation methods, our proposed method still
outperforms other two baselines. We also observe that our method
under two perturbations obtains the best performance on the ESC-50
test set. Such performance might be due to the small size of the
ESC-50, therefore it is more sensitive to perturbations.

4.2. Comparative experiments on computation time for Uncer-
tainty and Uncertainty++

We further report the Average Time for the proposed method when
there is an increasing number of perturbations. The Average Time
measures a relative time increase compared to training time in each
task. As shown in Table 3, even with 6 perturbations, the Average
Time of the uncertainty++ is still less than 60s. This can be ex-
plained by the fact that our proposed method can limit the growth
of the additional training time. We also observe that our proposed
method outperforms other baselines in any number of perturbations,
which indicates our proposed method is computationally more ef-
ficient. In addition, the average time of uncertainty-shift is much
longer than others. Because the Audio Shift and Audio PitchShift
perturbations takes more time than simply adding noise.

Table 3: Average Time (s) in a comparative study of the proposed
uncertainty++ method. The K refers to the number of the perturba-
tions generated by perturbation methods.

Method K Average Time (s) ↓
2 1221.7

Uncertainty-Shift 4 2205.1
6 2926.1
2 246.2

Uncertainty-Noise 4 390.8
6 506.3
2 44.0

Uncertainty++ 4 48.5
6 55.1

5. CONCLUSIONS

In this work, we have presented uncertainty++, an efficient replay-
based continual learning method for on-device environmental sound
classification. Our method selects the historical data for the training
by measuring the per-sample classification uncertainty on the embed-
ding layer of the classifier. Experimental results on the DCASE 2019
Task 1 and ESC-50 datasets show that our proposed method out-
performs the baseline continual learning methods on classification
accuracy and computational efficiency. In future work, we plan to
apply and adapt our approach to other on-device audio classification
tasks such as audio tagging and sound event detection.
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