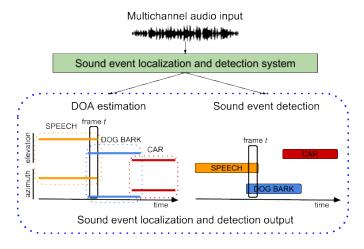


Task 3

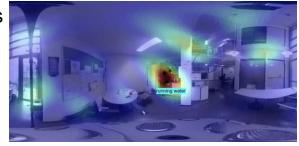
Sound Event Localization and Detection evaluated in real spatial sound scenes

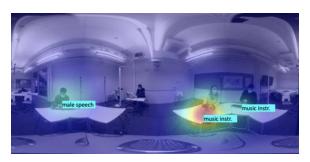
Archontis Politis, Parthasaarathy Sudarsanam, Daniel A. Krause, Sharath Adavanne, Tuomas Virtanen Kazuki Shimada, Yuichiro Koyama, Naoya Takahashi, Shusuke Takahashi, Yuki Mitsufuji


SONY

Sound Event Localization and Detection

Joint classification of sound events, class-wise activity detection, and event localization.

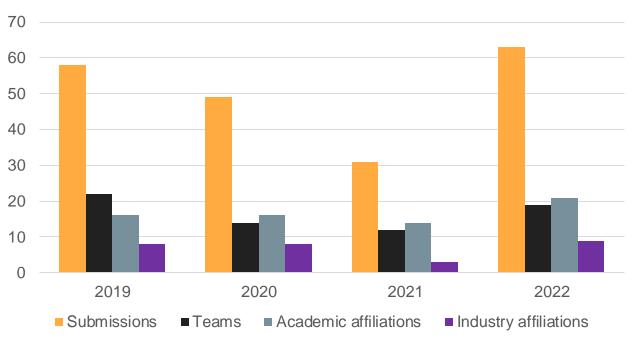



Dataset

Recordings of naturally acted scenes with multiple human agents in rooms interacting between them and with the environment.

The recordings have been captured with multiple types of sensors and these have been used to annotate them spatiotemporally.

- ~7hrs of recordings captured in Tampere, FI, and Tokyo, JP
- semi improvised scenes of 1-4 actors
- 11 different rooms
- 13 annotated sound classes
- natural composition of classes, class presence, event occurences and co-occurences, and spatial distribution



Submissions

SELD submissions 2019-2022

Results

Systems	Format	Method	Features	ER_{20°	F_{20°	LE	LR
Du_NERCSLIP	FOA	CNN, Conformer	mel spectra, intensity vector	0.35	58.3	14.6	73.7
Hu_IACAS	FOA	EINV2, Conformer CNN	mel spectra, intensity vector	0.39	55.8	16.2	72.4
Han_KU	FOA	SE-ResNet34, GRU	mel spectra, intensity vector	0.37	49.7	16.5	70.7
Xie_UESTC	FOA	CRNN	mel spectra, intensity vector	0.48	48.6	17.6	73.5
Bai_JLESS	MIC	CNN, Conformer ensemble	mel spectra, SALSA-Lite	0.47	49.3	16.9	67.9
Kang_KT	вотн	CRNN, ensemble	mel spectra, intensity vector, magnitude spectra, SALSA-Lite	0.47	45.9	15.8	59.3
Ko_SKKU	FOA	CRNN	magnitude spectra, eigenvector-based intensity vector	0.49	39.9	17.3	54.6
Chun_Chosun	FOA	CRNN, Transformer, ensemble	mel spectra, intensity vector	0.59	31.0	19.8	50.7
Scheibler_LINE	FOA	CNN, Conformer, SSAST, IVA	mel spectra, intensity vector	0.62	30.4	16.7	49.2
*Guo_XIAOMI	FOA	3DCNN	mel spectra, intensity vector	0.60	28.2	23.8	52.1
*Wang_SJTU	вотн	CRNN, Transformer, ensemble	mel spectra, intensity vector, GCC	0.67	27.0	24.4	60.3
Baseline	FOA	CRNN	mel spectra, intensity vector	0.61	23.7	22.9	51.4
*							

^{➤ 12/19} systems did better than the baseline

Top system *Du_NERCSLIP* had 145% improvement in spatial F-score and 36% improvement in localization error.

^{*}These two entries had the same rank in the challenge

Results: General trends

Systems	Format	Method	Features	ER_{20°	$F_{20^{\circ}}$	$oldsymbol{LE}$	LR
Du_NERCSLIP	FOA	CNN, Conformer	mel spectra, intensity vector	0.35	58.3	14.6	73.7
Hu_IACAS	FOA	EINV2, Conformer CNN	mel spectra, intensity vector	0.39	55.8	16.2	72.4
Han_KU	FOA	SE-ResNet34, GRU	mel spectra, intensity vector	0.37	49.7	16.5	70.7
Xie_UESTC	FOA	CRNN	mel spectra, intensity vector	0.48	48.6	17.6	73.5
Bai_JLESS	MIC	CNN, Conformer ensemble	mel spectra, SALSA-Lite	0.47	49.3	16.9	67.9
Kang_KT	вотн	CRNN, ensemble	mel spectra, intensity vector, magnitude spectra, SALSA-Lite	0.47	45.9	15.8	59.3
Ko_SKKU	FOA	CRNN	magnitude spectra, eigenvector-based intensity vector	0.49	39.9	17.3	54.6
Chun_Chosun	FOA	CRNN, Transformer, ensemble	mel spectra, intensity vector	0.59	31.0	19.8	50.7
Scheibler_LINE	FOA	CNN, Conformer, SSAST, IVA	mel spectra, intensity vector	0.62			49.2
*Guo_XIAOMI	FOA	3DCNN	mel spectra, intensity vector	0.60	28.2	23.8	52.1
*Wang_SJTU	вотн	CRNN, Transformer, ensemble	mel spectra, intensity vector, GCC	0.67	27.0	24.4	60.3
Baseline	FOA	CRNN	mel spectra, intensity vector	0.61	23.7	22.9	51.4

^{*}These two entries had the same rank in the challenge

- Model: Baseline CRNN is widely used, and many teams upgrade the model with CNN, Transformer, or Conformer.
- Feature: Most teams keep the feature of the baseline, mel spectra and intensity vector, while a few teams take SALSA-Lite or others.
- SELD method: More than half teams follow the baseline to use Multi-ACCDOA while some teams use ACCDOA, EINV2, or others.
- Data augmentation:
 - * Multichannel data simulation
 - * Audio channel swapping (Rotation)
 - * Mixup
 - * SpecAugment
 - * Band-pass filter
 - * Perturbation of gain/frequency/frame/pitch
 - * Angle noise to label

Results: Comments on several systems

Format	Method	Features	ER_{20°	F_{20°	$oldsymbol{LE}$	LR
FOA	CNN, Conformer	mel spectra, intensity vector	0.35	58.3	14.6	73.7
FOA	EINV2, Conformer CNN	mel spectra, intensity vector	0.39	55.8	16.2	72.4
FOA	SE-ResNet34, GRU	mel spectra, intensity vector	0.37	49.7	16.5	70.7
FOA	CRNN	mel spectra, intensity vector	0.48	48.6	17.6	73.5
MIC	CNN, Conformer ensemble	mel spectra, SALSA-Lite	0.47	49.3	16.9	67.9
вотн	CRNN, ensemble	mel spectra, intensity vector, magnitude spectra, SALSA-Lite	0.47	45.9	15.8	59.3
FOA	CRNN	magnitude spectra, eigenvector-based intensity vector	0.49	39.9	17.3	54.6
FOA	CRNN, Transformer, ensemble	mel spectra, intensity vector	0.59	31.0	19.8	50.7
FOA	CNN, Conformer, SSAST, IVA	mel spectra, intensity vector	0.62	30.4	16.7	49.2
FOA	3DCNN	mel spectra, intensity vector	0.60	28.2	23.8	52.1
вотн	CRNN, Transformer, ensemble	mel spectra, intensity vector, GCC	0.67	27.0	24.4	60.3
FOA	CRNN	mel spectra, intensity vector	0.61	23.7	22.9	51.4
	FOA FOA MIC BOTH FOA FOA BOTH	FOA Conformer FOA EINV2, Conformer CNN FOA SE-ResNet34, GRU FOA CRNN MIC CNN, Conformer ensemble BOTH CRNN, ensemble FOA CRNN FOA CRNN FOA CRNN FOA CRNN FOA CRNN, Transformer, ensemble FOA CRNN, Conformer, SSAST, IVA FOA 3DCNN BOTH CRNN, Transformer, ensemble	FOA CNN, Conformer FOA EINV2, Conformer CNN mel spectra, intensity vector FOA SE-ResNet34, GRU mel spectra, intensity vector FOA CRNN mel spectra, intensity vector MIC CNN, Conformer ensemble mel spectra, intensity vector MIC CRNN, ensemble mel spectra, intensity vector, magnitude spectra, SALSA-Lite FOA CRNN mel spectra, intensity vector, magnitude spectra, SALSA-Lite FOA CRNN mel spectra, intensity vector magnitude spectra, eigenvector-based intensity vector mel spectra, intensity vector	FOA CNN, Conformer FOA EINV2, Conformer CNN mel spectra, intensity vector CNN, Conformer ensemble mel spectra, intensity vector CNN, Conformer ensemble mel spectra, intensity vector CRNN, ensemble mel spectra, intensity vector, magnitude spectra, SALSA-Lite magnitude spectra, SALSA-Lite CRNN magnitude spectra, SALSA-Lite CRNN, Transformer, eigenvector-based intensity vector CRNN, Transformer, ensemble mel spectra, intensity vector CNN, Conformer, scast, IVA mel spectra, intensity vector CNN, Conformer, scast, IVA mel spectra, intensity vector CRNN, Transformer, ensemble mel spectra, intensity vector	FOA CNN, Conformer mel spectra, intensity vector 0.35 58.3 FOA EINV2, Conformer CNN mel spectra, intensity vector 0.39 55.8 FOA SE-ResNet34, GRU mel spectra, intensity vector 0.37 49.7 FOA CRNN mel spectra, intensity vector 0.48 48.6 MIC CNN, Conformer ensemble mel spectra, SALSA-Lite 0.47 49.3 BOTH CRNN, ensemble mel spectra, intensity vector, magnitude spectra, SALSA-Lite 0.47 45.9 FOA CRNN magnitude spectra, SALSA-Lite 0.47 45.9 FOA CRNN mel spectra, intensity vector 0.49 39.9 FOA CRNN, Transformer, ensemble mel spectra, intensity vector 0.59 31.0 FOA CNN, Conformer, spectra, intensity vector 0.62 30.4 FOA 3DCNN mel spectra, intensity vector 0.60 28.2 BOTH CRNN, Transformer, mel spectra, intensity vector 0.60 27.0	FOA CNN, Conformer mel spectra, intensity vector 0.35 58.3 14.6 FOA EINV2, Conformer mel spectra, intensity vector 0.39 55.8 16.2 FOA SE-ResNet34, GRU mel spectra, intensity vector 0.37 49.7 16.5 FOA CRNN mel spectra, intensity vector 0.48 48.6 17.6 MIC CNN, Conformer ensemble mel spectra, SALSA-Lite 0.47 49.3 16.9 BOTH CRNN, ensemble mel spectra, intensity vector, magnitude spectra, SALSA-Lite 0.47 45.9 15.8 FOA CRNN mel spectra, intensity vector 0.49 39.9 17.3 FOA CRNN, Transformer, eigenvector-based intensity vector 0.59 31.0 19.8 FOA CNN, Conformer, SSAST, IVA mel spectra, intensity vector 0.62 30.4 16.7 FOA 3DCNN mel spectra, intensity vector 0.60 28.2 23.8 BOTH CRNN, Transformer, ensemble mel spectra, intensity vector, GCC 0.67 27.0 24.4


^{*}These two entries had the same rank in the challenge

- Top 3 teams used external data and sophisticated data augmentation techniques.
- Kang_KT applied AD-PIT to multitask SELDnet.
- Ko_SKKU modified original mixup for ACCDOA.
- Scheibler_LINE used IVA to separte sources, while Park_SU used ResUNet.
- Guo_XIAOMI proposed a network to consider time alignment.
- Many more SELD-specific innovations proposed (COLOC representation, Spatial Mixup a.o)

Task 3 @ DCASE Workshop

Thank you!

