Model evaluation, a machine-learning bottleneck

Gaël Varoquaux

ĺnría_

See also [Varoquaux and Colliot 2022]

Model evaluation is the Achilles heel of machine learning

Machine learning has become an empirical science

Prediction challenge: Autism status

■10 000 € incentives

- Analysts overfit the public set
- Best performer: linear models on graph features
- Graph neural networks performed poorly

Little progress: publications on Alzeihmer's disease diagnostic

(more real-life) cohorts

Beyond the performance number

- ■Useless predictions using doctor's marks
- Training on automated labels extracted with bias

Models bring no value to the clinic

Deep learning on tabular data

Promising publications in serious venues & labs

But classic tree-based methods perform best

More valid benchmarks

Reflect and capture

- the application setting
- the generalization error

This talk:

- 1 Meaningful classification metrics
- Quantifying generalization error

Meaningful classification metrics

Metrics must capture and reflect application Going further for images analysis [Maier-Hein... 2022]

Meaningful metrics in imbalanced settings

Accuracy
uninformative under class imbalance
90% of class 0
⇒ predicting only class o gives Acc=90%

Balanced accuracy: errors on class o and class 1

- Sensitivity (also called recall): fraction of class 1 retrieved. $\frac{TP}{TP + FN}$
- Specificity: fraction of class o actually classified as o. $\frac{TN}{TN + FP}$
- Balanced accuracy: $\frac{1}{2}$ (sensitivity + specificity)

Sensitivity:
$$\mathbb{P}(P+|T+)$$

Specificity: $\mathbb{P}(P-|T-|)$

Asking the right question: $\mathbb{P}(P+|T+)$ vs $\mathbb{P}(T+|P+)$

Positive predictive value (via Bayes' theorem):

$$\mathbb{P}(T + \mid P +) = \frac{\text{sensitivity} \times \text{prevalence}}{(1 - \text{specificity}) \times (1 - \text{prevalence}) + \text{sensitivity} \times \text{prevalence}}$$

$$\frac{\text{Predictive positive}}{\text{Predictive positive}}$$

Summary metric: Markedness: PPV + NPV - 1

Drawback: depends on prevalence

⇒ Characterizes not only the classifier, but also the dataset

Definition:

Odds of a

$$\mathbb{O}(a) = \frac{\mathbb{P}(a)}{1 - \mathbb{P}(a)}$$

Likelihood ratio of positive class:

LR+ =
$$\frac{\mathbb{O}(T+|P+)}{\mathbb{O}(T+)}$$
 = $\frac{\text{Sensitivity}}{1-\text{Specificity}}$

- Independent of class prevalence
- Use prevalence on target population to compute $\mathbb{O}(T+)$

Useful to extrapolate across test-sets of different prevalence

Confidence score and calibration

Interpreting classifier score as a probability? - Calibration

Calibration

Average error rate for all samples with score s is s

Computed in bins on score s

ECE: expected calibration error Average error on bins of score s

Average error rate for all samples with score s is s

A calibrated classifier can assign a score of .6 to individuals, but be 100% accurate on a subgroup, and 20% on another.

A Calibration does not control individual probabilities

Varoquaux

Metrics controlling individual probabilities

Does the classifier approach $\mathbb{P}(y|X)$?

Proper scoring rules

Brier score =
$$\sum_{i=1}^{N} (\hat{s}_i - \hat{y}_i)^2$$
Confidence score

Minimal for $\hat{s} = P(y|X)$

(also log-loss)

Drawbacks

- cannot be interpreted as an error rate
- no scale

Varoquaux 1

- Classifier output: S = f(X)
- Label probabilities: $Q = \mathbb{P}[Y|X]$
- Calibrated score¹: $C = \mathbb{E}[\mathbb{P}[Y|X]|S]$
- 1 Knowing the classifier output, what's the label probabilities

Scoring rule decomposition

An oracle calibration plot

No calibration error On average predicted confidence = true probability

Grouping error Classifier over-confident on some samples, under-confident on others Measures the dispersion of scores

Requires access to true probabilities

Estimating true probabilities on well-chosen bins

(and controlling errors due to binning)

Meaningful classification metrics

- Machine learning research chases metrics These should reflect application as well as possible
- Think in terms of $\mathbb{P}(T+|P+)$
 - Accuracy reasonable proxy only for balanced classes
 - LR+ interesting to keep in mind
- Think in terms of uncertainty
 - Calibration quantifies average errors
 - Grouping loss: error on individual uncertainty

■ A single number does not tell the whole story

Quantifying generalization error

Corresponding research paper: [Bouthillier... 2021]

How we do model evaluation

Definitions: what are we benchmarking?

Senario 1: a prediction rule:

We are given $f: \mathcal{X} \to \mathcal{Y}$

Senario 2: a training procedure:

We are given: a procedure that outputs a prediction rule \hat{f} from training data $(\mathbf{X}, \mathbf{y}) \in (\mathcal{X} \times \mathcal{Y})^n$

Definitions: what are we benchmarking?

Senario 1: a prediction rule:

We are given $f: \mathcal{X} \to \mathcal{Y}$

For application claims: eg medicine

Senario 2: a training procedure:

We are given: a procedure that outputs a prediction rule \hat{f} from training data $(\mathbf{X}, \mathbf{y}) \in (\mathcal{X} \times \mathcal{Y})^n$

For machine-learning research (claims on algorithms)

6 Varoquaux

Benchmarking a prediction rule

We are given $f: \mathcal{X} \to \mathcal{Y}$

X_{test} different enough from X_{train}

- No repeated acquisition of same individual in train & test

 [Little... 2017]
- Ideally: show generalization to new site, later in time...

X_{test} representative of target population

Sample *X*_{test}:

- To match statistical moments
- To minimize a confounding association (shortcuts)

[Chyzhyk... 2018]

Evaluation error: Sampling noise on test set

Evaluation quality is limited by number of test examples

[Varoquaux 2018]

Sampling noise¹ for $n_{test} = 1000$:

Binomial distribution of error on test accuracy

The data at hand (eg the test set) is just a small sample of the full population "in the wild", and sampling other data will lead to other results.

Evaluation noise is not negligible – in Kaggle competitions

Uncertainty due to finite test set

Know when to stop, what to trust (diminishing returns, creeping complexity)

and damped intermedia. Dames of values as manatible with the

Confidence interval': Range of values compatible with the					
	observations		1 Technically not making the difference with a credible interval		
	N	65%	80%	90%	95%
	100	[-9.0% 9.0%]	[-8.0% 8.0%]	[-6.0% 5.0%]	[-5.0% 4.0%]
	1000	[-3.0% 2.9%]	[-2.5% 2.4%]	[-1.9% 1.8%]	[-1.4% 1.3%]
	10000	[-0.9% 0.9%]	[-0.8% 0.8%]	[-0.6% 0.6%]	[-0.4% 0.4%]
	100000	[-0.3% 0.3%]	[-0.2% 0.2%]	[-0.2% 0.2%]	[-0.1% 0.1%]

Table from [Varoquaux and Colliot 2022]

Benchmarking learning procedures

Benchmarking to conclude on good training procedures

■We are given: a procedure that outputs a prediction rule \hat{f} from training data $(\mathbf{X}, \mathbf{y}) \in (\mathcal{X} \times \mathcal{Y})^n$

We want machine-learning research claims (novel frobnicate improves prediction)

■ Many arbitrary components

torch.manual_seed(3407)??

[Picard 2021]

Useless to tune random seeds

(for weights init, dropout, data augmentation)

will not carry over to new training data

Benchmarking learning procedures: additional sources of variance

Variance when rerunning an evaluation, modifying arbitrary elements:

Across various computer vision and NLP tasks

[Bouthillier... 2021]

5 Varaguaux

Benchmark also hyper-parameter selection

Sub-optimal hyperparameters on models routinely lead to invalid conclusions See refs in [Bouthillier... 2021]

Random search [Bergstra and Bengio 2012]

Benchmark also hyper-parameter selection

Sub-optimal hyperparameters on models routinely lead to invalid conclusions See refs in [Bouthillier... 2021]

Random search [Bergstra and Bengio 2012]

Draw subsets to estimate variance [Grinsztajn... 2022]

Varoquaux

Benchmarking training procedures (eg to compare them)

Control arbitrary fluctuations (that will not generalize)

Sample all:

■data sampling
Multiple train-test splits (cross-validation)

- arbitrary choices (seeds)
 Randomize them all
- hyper-parameters
 Hyper-parameter optimization

Too expensive to fully randomize

Accounting for variance in conclusions

Confidence intervals & statistical testing

Statistical testing with multiple folds Challenge: folds are not independent

▲t-test/Wilcoxon across folds are not valid Don't divide std by number of folds

Solution: Neyman-Pearson-like approach

[Bouthillier... 2021]

■Test on
$$\mathbb{P}(p_1 > p_2) > \delta$$

$$H_0$$
 H_0 H_1

■ Evaluate $\mathbb{P}(p_1 > p_2)$ by resampling

Randomize everything: data splits, seeds,...

Gaussian approximation: compare differences to standard deviations

Varoquaux 3:

Meaningful performance metrics

- ■Should be suited to the application setting
- Machine learning does metric chasing 😁
- ■P(true label | predicted label)

 $\mathbb{P}(label \mid input)$

Evaluation procedures

- Account for variance
- Difference between applying prediction rules & learning them

Careful benchmarking is crucial

- ■Optimistic flukes will not generalize
- ■What is our purpose? External validity 🗳

References I

- A. I. Bandos, H. E. Rockette, and D. Gur. A permutation test sensitive to differences in areas for comparing roc curves from a paired design. *Statistics in medicine*, 24:2873, 2005.
- J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. *Journal of Machine Learning Research*, 13:281, 2012.
- X. Bouthillier, P. Delaunay, M. Bronzi, A. Trofimov, B. Nichyporuk, J. Szeto, N. Mohammadi Sepahvand, E. Raff, K. Madan, V. Voleti, ... Accounting for variance in machine learning benchmarks. *Proceedings of Machine Learning and Systems*, 3, 2021.
- D. Chyzhyk, G. Varoquaux, B. Thirion, and M. Milham. Controlling a confound in predictive models with a test set minimizing its effect. In 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pages 1–4. IEEE, 2018.
- J. Demšar. Statistical comparisons of classifiers over multiple data sets. *The Journal of Machine Learning Research*, 7:1–30, 2006.
- J. Demšar. On the appropriateness of statistical tests in machine learning. In Workshop on Evaluation Methods for Machine Learning in conjunction with ICML, page 65. Citeseer, 2008.

References II

- T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. *Neural computation*, 10(7):1895–1923, 1998.
- R. Dror, B. G., Bogomolov, M., and R. Reichart. Replicability analysis for natural language processing: Testing significance with multiple datasets. *Transactions of the Association for Computational Linguistics*, 2017.
- L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep learning on typical tabular data? In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2022.
- E. Lesaffre. Superiority, equivalence, and non-inferiority trials. *Bulletin of the NYU hospital for joint diseases*, 66(2), 2008.
- M. A. Little, G. Varoquaux, S. Saeb, L. Lonini, A. Jayaraman, D. C. Mohr, and K. P. Kording. Using and understanding cross-validation strategies. perspectives on saeb et al. *GigaScience*, 6(5):1–6, 2017.

Varoquaux

References III

- L. Maier-Hein, A. Reinke, E. Christodoulou, B. Glocker, P. Godau, F. Isensee, J. Kleesiek, M. Kozubek, M. Reyes, M. A. Riegler, ... Metrics reloaded: Pitfalls and recommendations for image analysis validation. *arXiv preprint arXiv:2206.01653*, 2022.
- A. Makarova, H. Shen, V. Perrone, A. Klein, J. B. Faddoul, A. Krause, M. Seeger, and C. Archambeau. Overfitting in bayesian optimization: an empirical study and early-stopping solution. *arXiv* preprint *arXiv*:2104.08166, 2021.
- C. Nadeau and Y. Bengio. Inference for the generalization error. *Machine learning*, 52(3): 239–281, 2003.
- A. Perez-Lebel, M. L. Morvan, and G. Varoquaux. Beyond calibration: estimating the grouping loss of modern neural networks. *arXiv*:2210.16315, 2022.
- D. Picard. Torch. manual_seed (3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision. *arXiv:2109.08203*, 2021.
- N. Traut, K. Heuer, G. Lemaître, A. Beggiato, D. Germanaud, M. Elmaleh, A. Bethegnies, L. Bonnasse-Gahot, W. Cai, S. Chambon, ... Insights from an autism imaging biomarker challenge: promises and threats to biomarker discovery. *NeuroImage*, 255:119171, 2022.

References IV

G. Varoquaux and V. Cheplygina. Machine learning for medical imaging: methodological failures and recommendations for the future. *NPJ digital medicine*, 5(1):1–8, 2022.

G. Varoquaux and O. Colliot. Evaluating machine learning models and their diagnostic value. https://hal.archives-ouvertes.fr/hal-03682454/,2022.