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Model evaluation
is the Achilles heel
of machine learning

Machine learning
has become
an empirical science




Diagnostic from brain images [Traut... 2022]

Prediction challenge: Autism status
m10 000 € incentives

Public set

Private set -

Analysts overfit ' ' '
the public set 0:6 08 HO
e publi ROC-AUC of a submission

m Best performer: linear models on graph features
mGraph neural networks performed poorly
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Machine learning in medical imaging
Kaggle competitions 075

Lung cancer classification |

[Varoquaux and Cheplygina 2022]
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Machine learning in medical imaging [Varoquaux and Cheplygina 2022]

Little progress: publications on Alzeihmer’s disease diagnostic
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Machine learning in medical imaging [Varoquaux and Cheplygina 2022]

Beyond the performance number
m Useless predictions using doctor’s marks
mTraining on automated labels extracted with bias

Models bring no value to the clinic



Tabular deep learning [Grinsztajn... 2022]

Deep learning on tabular data
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More valid benchmarks

Reflect and capture
- the application setting
- the generalization error

This talk: ;‘—

&) Meaningful classification metrics

a Quantifying generalization error




&) Meaningful classification metrics

Metrics must capture and reflect application
Going further for images analysis [Maier-Hein... 2022]



Meaningful metrics in
imbalanced settings




Accuracy, balanced accuracy? Truth:

T+ T—
Accuracy o
uninformative under class imbalance g = TP FP
90% of class o : . . .%
= predicting only class 0 gives Acc=90% &, < FN TN

Balanced accuracy: errors on class 0 and class 1

m Sensitivity (also called recall): fraction of class 1 retrieved. TP - FN
m Specificity: fraction of class 0 actually classified as o. NTL\'FP

m Balanced accuracy: 2 (sensitivity + specificity)

Sensitivity: P(P+|T+) Specificity: P(P - |T-)



Asking the right question: P(P+|T+) vs P(T+|P+)

Positive predictive value (via Bayes’ theorem):
Truth

) sensitivity X prevalence

P(ﬂ | P

(1 — speciﬁcity) X (1 - prevalence) + sensitivity X prevalence'
Predictive positive

Summary metric:  Markedness: PPV + NPV - 1

Drawback: depends on prevalence
= Characterizes not only the classifier, but also the dataset



Odds ratios for invariance to sampling [Varoquaux and Colliot 2022]

P(a)
1—P(a)

Definition: Odds of a O(a) =

Likelihood ratio of positive class:

_ O(T+|P+) _  Sensitivity

LR = —
' O(T+) 1- Specificity

m Independent of class prevalence
m Use prevalence on target population to compute O(T+)

Useful to extrapolate across test-sets of different prevalence



Confidence score
and
calibration
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Interpreting classifier score as a probability? — Calibration

Calibration
Average error rate for all
samples with score s is s

Computed in bins on score s

ECE: . .
expected calibration error

Average error on bins of score s
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Calibration is not enough [Perez-Lebel... 2022]

[ ] ® -
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A Calibration does not control individual probabilities



Metrics controlling individual probabilities

Does the classifier approach P(y|X)?

Proper scoring rules
Observed (binary) label

Brier score = Z ($; - 3},-)

Confidence séore I

2

(also log-loss)
Minimal for § = P(y|X)

Drawbacks
mcannot be interpreted as an error rate
mno scale



Decomposing scoring rules into error rates [Perez-Lebel... 2022]

m Classifier output: S = f(X)
m Label probabilities: Q = P[Y|X]
m Calibrated score': C = E[P[Y|X]|S]

1 Knowing the classifier output, what's the label probabilities

Scoring rule decomposition
Expected label

Calibrated score
E[d(S,Y)] = E[d(S, é)] + E[d(C,Q)] + E[d(Q,Y)]

Classifier output

Calibration Grouping Irreducible
error error error




The grouping loss

An oracle calibration plot

1

True probability
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% Predicted confidence '

[Perez-Lebel... 2022]

No calibration error
On average

predicted confidence
= true probability

Grouping error

Classifier over-confident on
some samples,
under-confident on others

Measures the dispersion of
scores

Requires access to true probabilities




Estimating the grouping loss [Perez-Lebel... 2022]
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Meaningful classification metrics

mMachine learning research chases metrics
These should reflect application as well as possible

mThink in terms of P(T+ |P+)
- Accuracy reasonable proxy only for balanced classes
- LR+ interesting to keep in mind

mThink in terms of uncertainty
- Calibration quantifies average errors
- Grouping loss: error on individual uncertainty

mA single number does not tell the whole story



€ Quantifying generalization error

Corresponding research paper: [Bouthillier... 2021]



How we do model evaluation

Full data

Train set q'est set

G Varoquaux
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Definitions: what are we benchmarking?

Senario 1: a prediction rule:
We are givenf : X - VY

Senario 2: a training procedure:
We are given: a procedure that outputs a prediction rule f
from training data (X,y) € (X x Y)"



Definitions: what are we benchmarking?

Senario 1: a prediction rule:
We are givenf : X - Y

For application claims: eg medicine

Senario 2: a training procedure:
We are given: a procedure that outputs a prediction rule f
from training data (X,y) € (X x Y)"

For machine-learning research (claims on algorithms)



1
Benchmarking a
prediction rule




External validation Before putting in production

We are givenf : X - Y

Xtest different enough from Xi;.in,

- No repeated acquisition of same individual in train & test
[Little... 2017]

- Ideally: show generalization to new site, later in time...

Xtest representative of target population
Sample Xtest:
- To match statistical moments

- To minimize a confounding association (shortcuts)
[Chyzhyk... 2018]



Evaluation error: Sampling noise on test set

Evaluation quality is limited by number of test examples

[Varoquaux 2018]
Sampling noise” for niest = 1000:
2% +2%
-10% -5% 0% +5% +10%

Binomial distribution of error on test accuracy

The data at hand (eg the test set) is just a small sample of the full population “in the wild”, and
sampling other data will lead to other results.

G Varoquaux
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Evaluation noise is not negligible - in Kaggle competitions

-0.75

+0.75

Lung cancer classification |

Test size: max 1K ) )
Smaller improvements than noise

-0.2

Schizophrenia classification

Test size: 120 C
Diminishing returns

Diminishing returns

+0.2

Lung tumor segmentation \

f
Test size: max 6k )
Poorer score on private set
-0.04
Winner gap

Improvement

,on 10% best

Nerve segmentation

0.0 petween public
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G Varoquaux [Varoguaux and Cheplygina 2022]
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+0.04

Actual
improvement
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Uncertainty due to finite test set

Know when to stop, what to trust
(diminishing returns, creeping complexity)

Confidence interval': Range of values compatible with the

observations 1 Technically not making the difference with a credible interval

N 65% 80% 90% 95%

100 [-9.0% 9.0%] [-8.0% 8.0%] [-6.0% 5.0%] [-5.0% 4.0%]
1000 [-3.0% 2.9%] [-2.5% 2.4%] [-1.9% 1.8%] [-1.4% 1.3%]
10000 [-0.9% 0.9%] [-0.8% 0.8%] [-0.6% 0.6%] [-0.4% 0.4%]
100000 [-0.3% 0.3%] [-0.2% 0.2%] [-0.2% 0.2%] [-0.1% 0.1%]

Table from [Varoquaux and Colliot 2022]
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Benchmarking to conclude on good training procedures

mWe are given: a procedure that outputs a prediction rule f
from training data (X,y) € (X x Y)"

We want machine-learning research claims
(novel frobnicate improves prediction)

mMany arbitrary components
torch.manual_seed(3407) ?? [Picard 2021]

Useless to tune random seeds
(for weights init, dropout, data augmentation)

will not carry over to new training data



Benchmarking learning procedures: additional sources of variance

Variance when rerunning an evaluation,
modifying arbitrary elements:

Data augment
Data order
Weights init NG
Dropout
Numerical noise B

0 1

relative scale

Across various computer vision and NLP tasks (Bouthillier... 2021]



Full data

Uncertainty due to test set sampling l

The test set remains a limited sample
of the population
I | ]

The train-test split is an arbitrary choice Train set Test set

Data (bootstrap) NN

Data augment
Data order
Weights init NG
Dropout
Numerical noise W [Bouthillier... 2021]

0 1




Uncertainty due to test set sampling -FU“ O:ata —

The test set remains a limited sample
of the population
I I S 1]

The train-test split is an arbitrary choice Train set Test set

Data (bootstrap) NN

Data augment
Data order
Weights init NG
Dropout
Numerical noise B [Bouthillier... 2021]

n 1

Better evaluation
Sample multiple times these arbitrary choices: cross-validation



Benchmark also hyper-parameter selection

Hyperparameter 1
SU b_optimal hyper_ (important hyperparameter)

parameters on models
routinely lead to invalid

conclusions
See refs in [Bouthillier... 2021]

Random search
[Bergstra and Bengio 2012]

Hyperparameter 2
(unimportant hyperparameter)

Region of good
hyperparameters

-



Benchmark also hyper-parameter selection

Sub-optimal hyper- +0
parameters on models /—
routinely lead to invalid 09 xcBoosEE— -

conclusions

See refs in [Bouthillier... 2021]

1

Random Search *ET Transformer

[Bergstra and Bengio 2012]

0.7

fResnet

Normalized test accuracy of best
model (on valid set) up to this iteration
o
(o]

Draw subsets to

estimate variance le+01 1e+03 le+0t
[Grinsztajn... 2022] Random search time (seconds)



Benchmarking training procedures (eg to compare them)

Control arbitrary fluctuations (that will not generalize)

Sample all: -FuII data

mdata sampling
Multiple train-test splits (cross-validation) 1

Train set Test set

marbitrary choices (seeds)
Randomize them all

m hyper-parameters
Hyper-parameter optimization Too expensive to fully randomize



Accounting for variance in conclusions -Fu“ dlata

Confidence intervals & statistical testing \ \
I I N I

Statistical testing with multiple folds Train set Test set

Challenge: folds are not independent
At-test/Wilcoxon across folds are not valid
Don’t divide std by number of folds

Solution: Neyman-Pearson-like approach [Bouthillier... 2021]

mTest on P(p; > p,) > & Ho W H,

m Evaluate P(p, > p,) by resampling
Randomize everything: data splits, seeds,...

Gaussian approximation: compare differences to standard deviations



More valid benchmarks [varoquaux and Colliot 2022]

Meaningful performance metrics

mShould be suited to the application setting

mMachine learning does metric chasing

m P(true label | predicted label) P(label | input)

Evaluation procedures
mAccount for variance
mDifference between applying prediction rules & learning them

Careful benchmarking is crucial
m Optimistic flukes will not generalize

mWhat is our purpose? External validity %

@GaelVaroquaux
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