EPFL

 École polytechnique fédérale de Lausanne

EPFL

Anomalous sound detection (ASD)

- **ASD** aims to identify whether a machine sound is:
 - Normal
 - Anomalous
- Anomalous sounds:
 - Very diverse
 - Rarely occur
- Real-world environments are often changing.

DCASE2022 Data Challenge Task 2

DONOLLEGEL Data Olidiiciigo idaki

Description:

The dataset contains 7 machine types with 6 sections each:

Each section has

Source domain : **990** audio normal clips **Target** domain : **10** audio normal clips

and is dedicated to a specific type of domain shift.

DG

operating conditions vary (voltage, velocity, factory noise, etc ...)

EPFL

Method

- We propose a new consistency term with:
 - Virtual domains generated by linearly interpolated feature vectors
 - Operating condition-invariant heath-state representation

Preprocessing step:

EPFL

Proposed Framework: DG-Mix - Intuition

Domain Generalization:

Normal sound from Different sources

Anomaly sound from Different sources

Normal sound from Unknown target

Anomaly sound from Unknown target

EPFL

Proposed Framework: DG-Mix - Intuition

Domain Generalization:

Latent Domain Manifold

EPFL

Proposed Framework: DG-Mix

DG-Mix learns condition-invariant representations in an unsupervised manner by:

- Revealing the impact of attributes on the data.
- Obtaining uncorrelated embedding features containing specific information.
- Respecting defined geometrical constraints between different domains.

EPFL

Proposed Framework: DG-Mix - Losses

Experiments:

Results

Methods	Baseline MobileNet-V2	Proposed consistency loss without pre-training	VICReg with SpecAugment	DG-Mix
Overall Harmonic Mean (in %)	56.65	68.32	69.18	72.34

EPFL

Conclusion

- A novel ADS framework for Domain Generalization was proposed
- Pre-training improves generalization of a model.
- Superior performance on evaluation dataset.
- Mixup :
 - Better than standard data augmentations
 - No prior knowledge of fault characteristics assumed