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Text Augmentations

Augmentation Caption

Original The rain pours down.

Back Translation [5] It rains cats and dogs.
Insert It tree rains cats and dogs.
Delete 6 It rains cats and degs.

Swap It and cats rains dogs.
Synonym It drizzles cats and dogs.
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R@l R@5 R@I0 mAP@I10
DCASE baseline 3.50 11.50  19.50 7.50 £0.00
baseline 6.63 20.06 31.52 12.53£0.08
+ AudioSet pretraining 13.18 35.30 48.61 22.8040.29
+ augmentations 14.50 37.24 51.04 24.274+0.19
+ AudioCaps pretraining  14.34 38.12  52.04 24.57 +0.15




Ablation Study Results

R@] R@5 R@10 mAP@I10

SMBO 14.50 37.24 51.04 24.2740.19
no audio aug 13.88 36.94 51.06 23.74+0.16
no text aug 13.12  35.77  49.25 22.91 +0.08

no SpeAugment 13.50 36.60 50.91 23.534+0.20
no FreqMixStyle  13.61 36.91  50.69 23.62+£0.14
no Gain Augment 14.84 37.81 50.95 24.05 £ 0.26
no BT 13.61 36.38 50.00 23.43£0.18
no EDA 13.33  37.02 49.94 23.2740.03
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Figure 1: Overviews of the Audio Retrieval Framework

Original Guin Augmentation Togmemmion Capion

Figure 2: Oxerview of the audio avgmentarion pipeline,

Tabe I: Overview of the text augmentation pipeline
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ABSTRACT

The absence of large labeled datascts remains a signif cant chal-
lenge inmany sppliuionses of dep lesming. Reserers and
practitioners typically resort 1o ransfer learming and data augmen-
tation 10 alleviate this ssue. We study these strategies in the con-
o retrieval with natural language queries (Task 6 of the

a shared audio-caption space in which relatc
Terem mdalin sr cloe. We employ srious et .my)venmmn
techniques on audio and text inputs and systematically tune their
corresponding hyperparameters with sequential model-based opti-
mization. Our results show that the used augmentations sirategies
reduce overf ting and improve retrieval performance.

Index Terms— Language-based Audio Retieval, Transfer
Leaming, Audio Augmentation, Text Augmentation

1L INTRODUCTION

Natural-linguage-based audio retrieval is concerned with ranking
‘audio recordings depending on their content’s similarity 10 textual
deserpions. Rotiea sk ik his e ypclysoved by con-
p rcorins ud el dosripons

ntatons and then lging e i mplwn space:
Fanking can then be done based on the distance between cmbed-
dings. These sysems” el prfornance higly depends on
the quality of the audio and text et models, which must
e et it sl ey o

3
ate such featur extractors v by iing modelswih millons of p-
rameters direetly fron features . decp leaming. These
e embedink mode e g muber f i oxm:
plsahshe 400 million magext i ed o i CLIP ).
3 o g incge il e, v bl ol
o doaes e Clth and Ay e o

i T ok showesses o 1 e ol sl e
sl nd e nel neovorks 0 et s of e a il

model under this imiting condition. We evaluate our approach in
e conentof sk 6 of he 2022 DCASE Chlenge (3] which
concerned with audio retrieval from natural language descriptions.
We demomsnte how n iy wel-pefoning basln ol

Figure 1: The proposed audio-retieval system in a nutshell: Audio
into the shared
Doding sce vi e ko and descripion ebeking oodele o
ind G, respectively. Th contrastive loss maximizes the similari
s beeon matching pis

2. RELATED WORK

he idea of algnin it nd i eares o conenosd e
wrieval is not new: Early audio etrieval methods connected bag-of-
ord o e an MIFCC et v dmy o -
tive models [6]. However, the handerafied featurcs and the rela-
vty small bl inied e mehods” gertomiane, O

enable feature extractors that pro-
e igh-ent il ang et erestaions o i ot f.
wres. Xie (21 or example, wed a comoluiona recu-

ko extract frame-

1 R
cently, language-based audio retieval has received increased aten-
tion duc 1o the oot sk Gb in the 2022 DCASE
challenge [5]. The task's objec reate a retrieval system
(ha s natural-anguase ueie a0 nput nd reioves the 1
bestmatching recordings from o testset. The top ranking systems

\aion methods and petsning 60 AwdioSel

Jacase. comsnity/chal lenge2022/
anguage-based-audio- retrieval

ke CNN14 [7] and BERT [8]. respectively
While most systems applied SpecAugment [9] other data augmen

010 attention. We address this paucity and sty a range of audio
and text augmentation methods in the context of audio rtrieval.
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