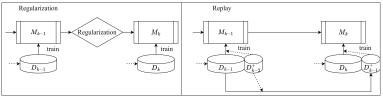
Continual Learning For On-Device Environmental Sound Classification Spotlight presentation at DCASE 2022

Yang Xiao^{1,*} Xubo Liu^{2,*} **James King**² Arshdeep Singh² Eng Siong Chng¹ Mark D. Plumbley² Wenwu Wang²

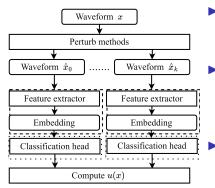
> ¹School of Computer Science and Engineering Nanyang Technological University, Singapore

²Centre for Vision, Speech and Signal Processing (CVSSP) University of Surrey, UK

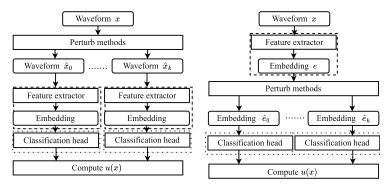
The Problem


- Learning unseen classes is a major problem for on-device environmental sound classification.
- We utilise the continual learning paradigm to help address this problem.
- Our continual learning based method selects historical data for training by measuring per-sample classification uncertainty.
- Experimental results on the DCASE 2019 Task 1 and ESC-50 dataset show that our method outperforms baseline continual learning methods on accuracy and computational efficiency.

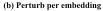
Approaches


- Continual learning (CL) aims to continuously learn new knowledge over time while retaining and reusing previously learned knowledge.
- Existing CL methods can be generally divided into two categories:
 - regularization-based methods
 - replay-based methods/ rehearsal-based

Uncertainty


(a) Perturb per waveform

- The Uncertainty memory update algorithm selects a sample based on its uncertainty
 - Specifically, the first step groups the tasks $\tau_k = (x, c)$ in the training buffer \hat{D}_{k-1} into subsets of unique classes D_c
 - The second step estimates the uncertainty of each sample x in D_c
- Finally the samples to replay are selected based on this score.



Uncertainty++

(a) Perturb per waveform

$$\hat{e} = e + U(-\frac{\lambda}{2}, \frac{\lambda}{2}) * std(e)$$

The Results

Method	DCASE	2019 Task 1	ESC-50		
method	ACC ↑	BWT ↑	ACC \uparrow	BWT ↑	
Finetune	0.205	-0.276	0.181	-0.307	
Random	0.473	-0.115	0.225	-0.231	
Reservoir	0.568	-0.096	0.430	-0.121	
Prototype	0.559	-0.089	0.482	-0.104	
Uncertainty	0.578	-0.079	0.477	-0.111	
Uncertainty++	0.581	-0.079	0.500	-0.121	

- Uncertainty++ method achieves better performance than the five baselines including existing MUA methods.
- Even with only two perturbation methods, our proposed method still outperforms other two baselines.

Method	к	DCASE 2019 Task 1		ESC-50	
motriou		ACC ↑	BWT ↑	ACC \uparrow	BWT ↑
Uncertainty-Shift	2	0.557	-0.101	0.461	-0.111
	4	0.575	-0.103	0.476	-0.118
	6	0.567	-0.079	0.477	-0.118
Uncertainty-Noise	2	0.560	-0.100	0.465	-0.118
	4	0.535	-0.104	0.473	-0.118
	6	0.578	-0.079	0.458	-0.120
Uncertainty++	2	0.571	-0.102	0.500	-0.121
	4	0.548	-0.103	0.481	-0.114
	6	0.581	-0.079	0.484	-0.119

Method	Κ	Average Time (s) \downarrow
	2	1221.7
Uncertainty-Shift	4	2205.1
	6	2926.1
Uncertainty-Noise	2	246.2
	4	390.8
	6	506.3
	2	44.0
Uncertainty++	4	48.5
	6	55.1

