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The Problem

▶ Learning unseen classes is a major problem for on-device
environmental sound classification.

▶ We utilise the continual learning paradigm to help address
this problem.

▶ Our continual learning based method selects historical
data for training by measuring per-sample classification
uncertainty.

▶ Experimental results on the DCASE 2019 Task 1 and
ESC-50 dataset show that our method outperforms
baseline continual learning methods on accuracy and
computational efficiency.
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Approaches

▶ Continual learning (CL) aims to continuously learn new
knowledge over time while retaining and reusing previously
learned knowledge.

▶ Existing CL methods can be generally divided into two
categories:
▶ regularization-based methods
▶ replay-based methods/ rehearsal-based
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Uncertainty

▶ The Uncertainty memory
update algorithm selects a
sample based on its uncertainty

▶ Specifically, the first step groups
the tasks τk = (x, c) in the training
buffer D̂k−1 into subsets of unique
classes Dc

▶ The second step estimates the
uncertainty of each sample x in
Dc

▶ Finally the samples to replay are
selected based on this score.
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Uncertainty++
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The Results

Method DCASE 2019 Task 1 ESC-50

ACC ↑ BWT ↑ ACC ↑ BWT ↑

Finetune 0.205 -0.276 0.181 -0.307
Random 0.473 -0.115 0.225 -0.231

Reservoir 0.568 -0.096 0.430 -0.121
Prototype 0.559 -0.089 0.482 -0.104

Uncertainty 0.578 -0.079 0.477 -0.111
Uncertainty++ 0.581 -0.079 0.500 -0.121

Method K DCASE 2019 Task 1 ESC-50

ACC ↑ BWT ↑ ACC ↑ BWT ↑

2 0.557 -0.101 0.461 -0.111
Uncertainty-Shift 4 0.575 -0.103 0.476 -0.118

6 0.567 -0.079 0.477 -0.118
2 0.560 -0.100 0.465 -0.118

Uncertainty-Noise 4 0.535 -0.104 0.473 -0.118
6 0.578 -0.079 0.458 -0.120
2 0.571 -0.102 0.500 -0.121

Uncertainty++ 4 0.548 -0.103 0.481 -0.114
6 0.581 -0.079 0.484 -0.119

▶ Uncertainty++ method achieves
better performance than the five
baselines including existing MUA
methods.

▶ Even with only two perturbation
methods, our proposed method
still outperforms other two
baselines.

Method K Average Time (s) ↓

2 1221.7
Uncertainty-Shift 4 2205.1

6 2926.1
2 246.2

Uncertainty-Noise 4 390.8
6 506.3
2 44.0

Uncertainty++ 4 48.5
6 55.1
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