A HYBRID SYSTEM OF SOUND EVENT DETECTION TRANSFORMER AND FRAME-WISE MODEL FOR DCASE 2022 TASK 4

Yiming Li^{1, 2}, Zhifang Guo^{1, 2}, Zhirong Ye^{1, 2}, Xiangdong Wang¹, Hong Liu¹, Yueliang Qian¹, <u>Rui Tao³</u>, Long Yan³, Kazushige Ouchi³

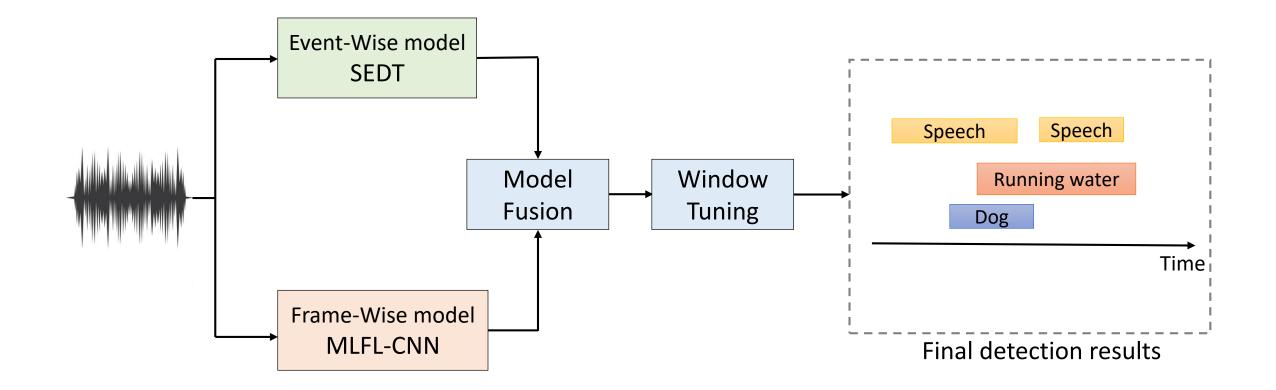
¹ Institute of Computing Technology, Chinese Academy of Sciences eamon.y.li@gmail.com, {guozhifang21s, yezhirong19s, xdwang, hliu, ylqian}@ict.ac.cn ² University of Chinese Academy of Sciences ³ Toshiba China R&D Center {taorui, yanlong}@toshiba.com.cn, kazushige.ouchi@toshiba.co.jp

Outline

- Overview
- Method
- Experiments
- Conclusions

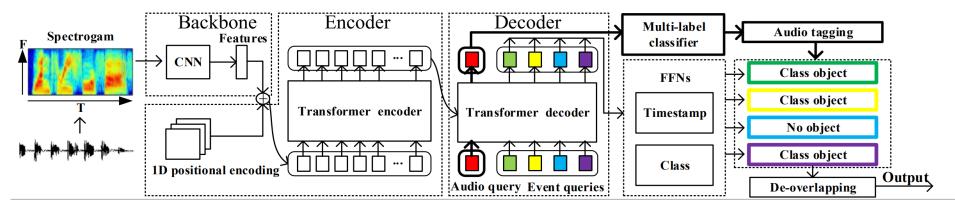
Overview

Pipelines of the Hybrid System



Method

Sound Event Detection Transformer (SEDT)

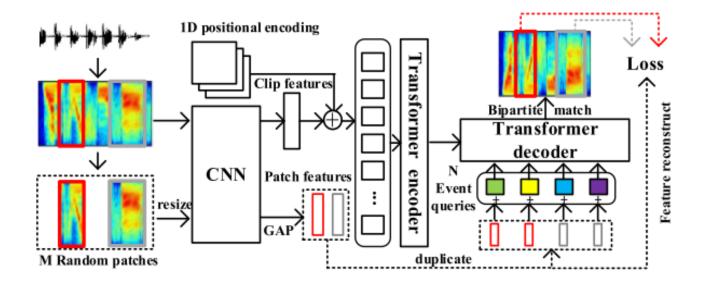


- Aims

To learn mapping function from input spectrogram to event boundaries directly

- Key Components
 - Backbone and Encoder Extract primary features from input spectrograms
 - Audio / Event Queries and Decoder
 Gather information from the encoder outputs via encoder-decoder cross-attention mechanism
 to generate event-level representations (event queries) and clip-level representations (audio queries)
 - Multi-label classifier and FFNs Transform the event-level and clip-level representations into event detection and audio tagging results

Self-supervised SEDT (SP-SEDT)



Patch Localization and Feature Reconstruction as pre-training task Randomly crop spectrogram along the time axis to obtain several patches, and then pre-train the model to predict the corresponding locations of the patches as well as reconstruct the features

Semi-supervised SEDT (SS-SEDT)

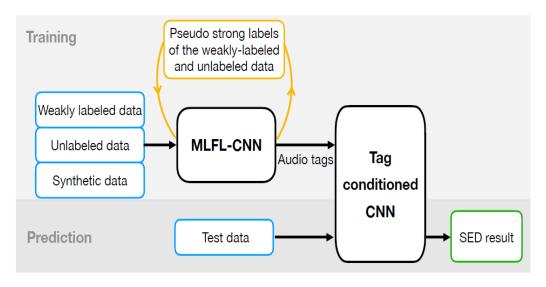
```
Require: \mathcal{B}_L = labeled batch, \mathcal{B}_U = unlabeled batch
      Require: S_{\theta}(x) = student model, T_{\theta'}(x) = teacher model
      Require: A_w(x) = weak augmentation function
      Require: A_s(x) = strong augmentation function
      Require: \alpha = learning rate, \gamma = EMA ratio
      Require: \mathcal{L} = \text{loss function}
      Ensure : \theta, \theta'
 1 for i \rightarrow 1 to max_epochs do
               foreach \mathcal{B}_L \cup \mathcal{B}_U \in \mathcal{B} do
  2
                       \mathcal{J}_{\sup} \leftarrow \frac{1}{|\mathcal{B}_L|} \sum_{(x_i, y_i) \in \mathcal{B}_L} \mathcal{L}\left(S_\theta\left(A_w(x_i)\right), y_i\right);
  3
                       foreach x_i \in \mathcal{B}_U do y_i \leftarrow T_{\theta'}(A_w(x_i));
  4
                       \hat{\mathcal{B}} \leftarrow \operatorname{Mixup}(\mathcal{B}_L, \mathcal{B}_U);
  5
                       \mathcal{J}_{\text{unsup}} \leftarrow \frac{1}{|\hat{\mathcal{B}}|} \sum_{(\hat{x}_i, \hat{y}_i) \in \hat{\mathcal{B}}} \mathcal{L}\left(S_{\theta}\left(A_s(\hat{x}_i)\right), \hat{y}_i\right);
  6
                       \begin{array}{l} \theta \leftarrow \theta - \alpha (\frac{\partial \mathcal{J}_{\text{sup}}}{\partial \theta} + \frac{\partial \mathcal{J}_{\text{unsup}}}{\partial \theta}); \\ \theta' \leftarrow \gamma \theta' + (1 - \gamma)\theta; \end{array} 
  7
  8
               end
10 end
```

Proposed SSL techniques

- Line 5: Mixup of Labeled and Unlabeled Data to improve the model robustness to pseudo annotation noise
- Line 4, 6: Asymmetric Augmentation to regularize the consistency between student and teacher under data perturbations
- Line 6: Focal Loss to handle the unbalanced event categories in SED
- Line 8: **EMA model** to generate more reliable event-level pseudo labels

Metric Learning and Focal Loss CNN (MLFL-CNN)

MLFL-CNN is a traditional frame-wise model which obtains frame-level classification probabilities and then applies pooling mechanisms to acquire final event detection results



MLFL-CNN contains Three branches

- Trained in a multi-branch manner to exploit the heterogeneous dataset as well as narrow the gap between real and synthetic data
- A tag-conditioned CNN is utilized to generate final predictions according to audio tags provided by MLFL-CNN
- Traditional **mean-teacher** framework is adopted

Model Fusion and Window Tuning

Model Fusion

Derive Class-specific PSDS $\mu_{TP,c} = r_{TP,c} \quad \sigma_{TP,c} = r_{TP,c} - \mu_{TP,c}$ $eTPR_c: \quad r_c(e) \triangleq \mu_{TP,c}(e) - \alpha_{ST} * \sigma_{TP,c}(e)$ $PSDS_c \triangleq \frac{1}{e_{max}} \int_0^{e_{max}} r_c(e) de$ Get ensemble weights for each model *i* and class *c* $w_{i,c} = \frac{PSDS_{i,c}}{\sum_{i=1}^N PSDS_{i,c}}$ $\hat{p_c} = \sum_{i=1}^N w_{i,c} * p_{i,c}$

Window Tuning

For a given event class, enumerate window length and find the optimal one to optimize PSDS

$$w{l_c}^* = \operatorname*{arg\,max}_{wl_c} \frac{\mathrm{PSDS}_c}{\mathrm{PSDS}}$$

Experiments

System Performance

_	Table 1: The PSDS on the validation set				
	System	Extra data	PSDS1	PSDS2	
- Official Baseline	Baseline 1	_	0.336	0.536	
	Baseline 2	\checkmark	0.351	0.552	
	System 1	\checkmark	0.449	0.645	
Optimize PSDS1 Optimize PSDS2	System 2	\checkmark	0.115	0.816	
Optimize PSDS2	System 3		0.420	0.618	
_	System 4		0.099	0.783	

Our systems outperform the official baseline to a large extent, and finally ranked 6th/9th in the final challenge.

Ablation Study

Table 2: Ablation study on techniques in SS-SEDT							
MU	FL	AA	EMA	PSDS1	PSDS2		
	\checkmark	\checkmark	\checkmark	0.372	0.570		
\checkmark		\checkmark	\checkmark	0.349	0.540		
\checkmark	\checkmark		\checkmark	0.369	0.566		
\checkmark	\checkmark	\checkmark		0.357	0.538		
\checkmark	\checkmark	\checkmark	\checkmark	0.388	0.573		

All proposed techniques can improve the performance of SS-SEDT

Table 3: Ablation study on window tuning and model fusion							
Id	Model	MF	WT	PSDS1	PSDS2		
1	Single SEDT			0.415	0.582		
2	Ensemble SEDT			0.431	0.607		
3	Single frame			0.349	0.668		
4	Ensemble frame			0.392	0.673		
5	Hybrid system	\checkmark		0.437	0.740		
6	Hybrid system	\checkmark	\checkmark	0.449	0.816		

- Frame-wise model and SEDT can supplement each other while combining together
- Window Tuning and Model Fusion have beneficial effects

Conclusions

We developed a framework to fuse the detection results of the frame-wise model and event-wise model, which leads to improved PSDS scores on the DCASE2022 validation set

Thank You