Knowledge Distillation From Transformers for Low-Complexity Acoustic Scene Classification

Florian Schmid, Shahed Masoudian, Khaled Koutini and Gerhard Widmer

System for ASC Task of the DCASE'22 Challenge [1] Key Ingredients

Main Difficulties
 1. Low-complexity Constraints
 2. Cross-Device Generalization

- Tackle 1. with Transformer-to-CNN
 Cross-Model Knowledge Distillation
- Tackle 2. with **Freq-MixStyle** [2]

Figure 1: Overview of acoustic scene classification system.

Knowledge Distillation From Transformers Setup

- Teacher: Patchout FaSt Spectrogram Transformer (PaSST) [3]
- **Student**: Compact Version of CP-ResNet [4]
- Loss: weighted combination of Hard Label and Distillation Loss

Knowledge Distillation From Transformers Teacher and Student

- Teacher: PaSST [3]
 - Audio Spectrogram Transformer
 - well-performing but large and complex
- Student: Compact CP_ResNet [4]
 - receptive field regularized
 - reduced width and depth
 - \circ grouping
 - (frequency-)pooling

Freq-MixStyle [2] Method

- Method to improve Cross-Device Generalization by mixing frequency statistics
- Vary device-style, retain scene label

Results Key Findings

- Transformer-to-CNN Knowledge Distillation improves performance on ASC substantially
- Having a better teacher (KD variations) improves results slightly
- Freq-MixStyle improves generalization to unseen devices for student and teacher
- Ensembling PaSST models trained with different Freq-MixStyle configurations improves results on unseen devices

References

[1] I. Martìn-Moratò, F. Paissan, A. Ancilotto, T. Heittola, A. Mesaros, E. Farella, A. Brutti, and T. Virtanen, "Low complexity acoustic scene classification in dcase 2022 challenge," 2022.

[2] B. Kim, S. Yang, J. Kim, H. Park, J. Lee, and S. Chang, "Domain generalization with relaxed instance frequency-wise normalization for multi-device acoustic scene classification," in Interspeech, 2022.

[3] K. Koutini, J. Schlüter, H. Eghbal-zadeh, and G. Widmer, "Efficient Training of Audio Transformers with Patchout," in Interspeech, 2022.

[4] K. Koutini, H. Eghbal-zadeh, and G. Widmer, "Receptive field regularization techniques for audio classification and tagging with deep convolutional neural networks," IEEE/ACM Transactions on Audio, Speech and Language Processing, 2021.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, "Imagenet: A large-scale hierarchical image database," in CVPR, 2009.

[6] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, "Audio set: An ontology and human-labeled dataset for audio events," in ICASSP, 2017.

[7] T. Heittola, A. Mesaros, and T. Virtanen, "Acoustic scene classification in dcase 2020 challenge: generalization across devices and low complexity solutions," in DCASE 2020 Workshop, 2020, pp. 56–60.

Appendix

Results Student Model

Method		Confi	guration	í			Test A	ccuracy (%)	Log Loss
	Mixup	Freq-MixStyle	Temp	Teach. Type	AS	Real	Sim	Unseen	Overall	Overall
	×	×	-	No	×	61.97	50.10	40.71	50.92	1.5822
Student Baseline	1	×	-	No	×	62.70	52.48	42.99	52.72	1.4161
	×	1	-	No	×	63.89	56.00	49.98	56.62	1.2344
the second second	×	×	Н	Single	×	66.21	57.35	50.14	57.89	1.1316
KD Baseline	1	×	H	Single	×	66.43	58.31	51.32	58.68	1.1063
	×	1	L	Single	×	64.36	58.36	55.12	59.28	1.1431
KD Ensemble	1	×	H	Ensemble	×	66.30	58.65	52.06	59.00	1.0888
	×	1	L	Ensemble	×	64.74	58.59	55.14	59.49	1.1322
KD Superior Teacher	1	×	Н	Superior	×	66.53	58.54	51.89	58.98	1.1033
	×	1	L	Superior	×	64.73	58.60	55.15	59.49	1.1313
	1	×	M	Single	1	66.54	59.09	52.49	59.37	1.0906
KD Audioset	×	1	M	Single	1	64.99	58.50	54.43	59.30	1.0939
	1	×	M	Ensemble	1	66.35	59.95	52.99	59.76	1.0794

Results

PaSST Downstream Training on TAU Urban Acoustic Scenes 2022 dev. dataset [7]

Method	Real	Sim	Unseen	Overall
PaSST Baseline	67.63	57.66	56.11	60.46
+ Mixup	67.85	58.45	57.10	61.13
+ Freq-MixStyle	67.68	58.97	58.22	61.64
Ensemble	68.62	60.11	59.73	62.82

Knowledge Distillation From Transformers KD Variations

- PaSST Ensemble: Five PaSST [3] models trained with different Freq-MixStyle [2] configurations
- Distillation on Out-Of-Domain-Dataset: KD on AudioSet [6]
- Predictions on extended audio sequences: reassembled 10-second audio snippets

Knowledge Distillation From Transformers Student Architecture: Compact CP_ResNet [4]

WIDTH	GROUPING	BLOCK	CONFIG		
W		INPUT	$5 \times 5, P$		
W 1		R	$3 \times 3, 1 \times 1, P_f$		
W	1	R	$3 imes 3, 3 imes 3, P_f$		
$2 \times W$	2	LINEAR R	$W ightarrow 2\dot{W} \ 3 imes 3, 3 imes 3$		
		LINEAR	$2W \rightarrow 4\dot{W}$		
$4 \times W - C$	1	R	$3 \times 3, 1 \times 1$		

CLASSIFIER $4 \times W - C \rightarrow 10$ classes Global mean pooling

 $P: 2 \times 2$ max pooling.

 $P_f: 2 \times 1$ max pooling over the frequency dimension.

R: RESIDUAL, THE INPUT IS ADDED TO THE OUTPUT

Knowledge Distillation From Transformers Patchout faSt Spectrogram Transformer (PaSST) [3]

Knowledge Distillation From Transformers Student Loss Calculation

 $Loss = CE(y, \delta(z_S)) + \lambda KL(\delta(z_T/\tau) || \delta(z_S/\tau))$

 $z_T...$ Teacher Logits CE... Cross-Entropy Loss

- z_S ... Student Logits
- au... Temperature
- δ ... Softmax Activation

KL... Kullback-Leibler Divergence

 λ ... Distillation Loss Weight

Freq-MixStyle [1] Intuition

Frequency Fingerprints across Labels more stable than across Devices

