

DCASE2022 Workshop

Workshop on Detection and Classification of Acoustic Scenes and Events

3-4 November 2022, Nancy, France

Detection and identification of beehive piping audio signals

Dominique Fourer and Agnieszka Orlowska

November 4, 2022

Detection and identification of beehive piping audio signals

Motivation

Piping signals are the most noticeable signs of swarming.

- Piping signals are specific short signals emitted by queen and workers bees
- Full of interest for a better understanding of the bees behavior
- Can be useful for improving smart beekeeping

Contributions

- A new annotated beehive dataset for smart beekeeping focusing on quacking and tooting bee signals
- The first machine learning-based study designed for bee piping signals
- A comparative evaluation of several proposed detection and audio classification methods
- Python codes and dataset are freely available: https://fourer.fr/dcase22

Figure : Spectrograms with highlighted F_0 and waveforms with RMS envelope of two distinct piping signals.

- Tooting corresponds to the sound emitted by a virgin queen bee who announces her presence by releasing pheromones and by tooting. Tooting corresponds to a series of pulsed, high-pitched sounds produced by pressing her thorax and operating her wing-beating mechanism without spreading her wings.
- Quacking is a distinct piping sound emitted by mature queens still confined within their queen cells answering the tooting. A chorus of synchronized quacking follows each tooting, and those specific swarming sounds are broadcasting in the bee nest as vibrations received by the workers.

Timbre features analysis

Figure : Fig. 2: 3D projections of our proposed piping dataset where each point corresponds to a one-second-long excerpt.

- Signal acoustic analysis based on timbre features first proposed by Peeters et al. 2011
- Temporal, spectral, harmonic and perceptual descriptors
- A total of 164 timbre features summarized by median and Inter Quartile Range (IQR) statistics related to the signal acoustic parameters.

Table : Experiment 3: Simultaneously detection and classification comparative results.

Method	Feat. dimension	Label	Recall	Precision	F - score	Accuracy
TTB+SVM		Tooting	0.88	0.78	0.83	
	164	Quacking	0.03	0.12	0.05	0.82
		Non-piping	0.99	0.89	0.94	
1D-CNN		Tooting	0.93	0.84	0.88	
	11,025	Quacking	0.10	0.54	0.16	0.85
		Non-piping	0.99	0.86	0.92	
MFCC+CNN		Tooting	0.88	0.81	0.84	
	17×47	Quacking	0.18	0.45	0.26	0.84
		Non-piping	0.99	0.90	0.95	
STFT+CNN		Tooting	0.94	0.97	0.95	
	512×42	Quacking	0.50	0.76	0.60	0.91
		Non-piping	0.99	0.89	0.94	

- 4 classification and 2 specific detection methods are proposed
- Beehive-independent 3-fold cross-validation comparative evaluation
- Additional non-piping signals are randomly chosen from the OSBH dataset