DCASE2022 Workshop

Sound Event Localization and Detection for Real Spatial Scenes: Event-Independent Network and Data Augmentation Chains

Presenter: Wenwu Wang⁵

Authors: Jinbo Hu^{1,2}, Yin Cao³, Ming Wu¹, Qiuqiang Kong⁴, Feiran Yang¹, Mark D. Plumbley⁵, Jun Yang^{1,2}

¹Key Laboratory of Noise and Vibration Research, Institute of Acoustics,

Chinese Academy of Sciences, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

³Xi'an Jiaotong Liverpool University, Suzhou, China

⁴ByteDance Shanghai, China

⁵Centre for Vision, Speech and Signal Processing, University of Surrey, UK

1. Introduction

Background

- Sound event localization and detection (SELD) contains sound event detection (SED) and direction-of-arrival (DoA) estimation.
- The dataset transforms from computationally generated spatial recordings to real-sound scene recordings in 2022.

Fig. An instance of annotated real spatial sound scenes, provided by DCASE

Summary

- Our system is based on Event-Independent Network V2 (EINV2) with data augmentation chains.
- We generate simulated data by randomly convolving chosen samples of sound events with measured SRIRs.

2. The method

Event-Independent Network V2

- EINV2 uses three tracks to address up to three overlapped sound events.
- Multi-head self-attention blocks are replaced by Conformer blocks.

Data augmentation chains

- Combined by augmentation operations, which are randomly selected and linked in a chain.
- Augmentation operations include Mixup, Cutout, SpecAugment, and frequency shifting.
- Rotation of First-order Ambisonics (FOA) signals is an additional augmentation method.

Fig. The architecture of EINV2

Fig. Diagram of data augmentation chains

2. The method Simulated Data

- Samples of sound events are based on affinity of the labels in that dataset to the target/inference classes.
- The maximum polyphony of target classes is 3, excluding additional polyphony of interference classes.

3. Experiments

SELD performance of our submitted systems

- EINV2 with data augmentation chains performs better.
- The results demonstrate the effectiveness of our simulated data over the official dataset.

		Validation set				Evaluation (Blind test) set			
System	Datasets	$ER_{20}\circ$	F_{20} °	LE_{CD}	LR_{CD}	$ER_{20}\circ$	$F_{20}\circ$	LE_{CD}	$\mathrm{LR}_{\mathrm{CD}}$
Baseline FOA [5]	Official	0.71	21.0%	29.3°	46.0%	0.61	23.7%	22.9°	51.4%
EINV2 w/o dataAug chains	Official	0.75	32.3%	24.0°	56.1%	-	-	-	-
EINV2 w/ dataAug chains	Official	0.56	$\mathbf{42.4\%}$	19.3°	$\mathbf{61.4\%}$	-	-	-	-
System #1	A+B+C	0.50	48.4%	19.5°	65.7%	0.44	49.2%	16.6°	70.4%
System #2	A+B	0.50	$\mathbf{51.0\%}$	$\bf 16.4^{\circ}$	65.9 %	0.40	${f 57.4\%}$	15.1°	70.6%
System #3	A	0.53	48.1%	17.8°	62.6%	0.39	55.8%	16.2°	${f 72.4\%}$
System #4	B	0.53	45.4%	17.4°	62.5%	0.40	50.9%	15.9°	69.4%

Tab. The metric scores on validation set and evaluation set

3. Experiments

Class- and room-wise metric scores

- The highly skewed class-wise performance.
- Poor generalization ability to different rooms.

Fig. Metric scores of System #2 on validation set of STARSS22 in detail.

4. Conclusions

- This paper presents an approach using an Event-Independent Network V2 with a novel data augmentation method for real life sound event localization and detection.
- For this challenge, we synthesized more training samples which are convolved using sound events from FSD50k and AudioSet with collected room impulse responses from TAU-SRIR DB.
- Results indicate that the ability to generalize to different environments and unbalanced performance among different classes are two main challenges.
- Proposed method outperforms DCASE 2022 Task3 baseline model and ranked second.

