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ABSTRACT

Few-shot learning is a machine learning approach in which a pre-
trained model is re-trained for new categories with just a few ex-
amples. This strategy results very convenient for tasks with a dy-
namic number of categories as typically happens in acoustic data.
The purpose of this paper is to explore the possibility of skipping
this pre-training process and using as training data only the five first
shots of an audio file together with the silence between them. For
the experimental evaluation, data belonging to the Validation set of
Task 5 DCASE Challenge 2023 is used, purposely neglecting the
Training set. This challenge consists of detecting animal species
using only five positive examples. In this exploratory work, three
learning methods have been compared: a ResNet architecture with
a prototypical loss, a ProtoNet and an XGBoost classifier. In all
cases, spectrograms with different transformations are used as in-
puts. Obtained results are evaluated per audio file, enabling the
obtention of particular conclusions about different animal species.
While the detection for some species presents encouraging results
using only these first 5-shots as training data, all the tested algo-
rithms are unable to successfully learn how to properly detect the
blackbird sounds of the dataset.

Index Terms— Bioacoustics, Few-shot learning, Prototypical
networks, Acoustic Event Detection, Sound Event Detection

1. INTRODUCTION

Supervised machine learning methods aim at categorizing data from
a training set containing (extensive amounts of) labeled data [1].
The performance of these techniques is typically evaluated with a
test dataset that incorporates data samples that not only belong to
the same categories as the training set but also adhere to a similar
statistical distribution [2]. Since the early stages of artificial intelli-
gence in the 1950s, such approaches have demonstrated promising
results across diverse fields, including healthcare, computer vision,
robotics, and finance, among many others. However, pursuing bet-
ter accuracy and performance results, building more robust systems
and processing an ever-increasing amount of features, has driven
modern approaches to supervised machine learning (i.e., deep learn-
ing [3]) to be astonishingly data hungry [4, 5]. This data hungriness
is especially concerning in those applications in which obtaining a
high volume of labeled data to build a training dataset is unfeasible
and/or the computational resources for processing all the training
data are unavailable [6]. Recently, this situation has motivated the
conception of what has been coined as few-shot learning paradigm:
an alternative approach to current data-hungry supervised learning
techniques that aims at building reliable systems with a dramatically
low number of labeled training examples [6].

Few-shot learning can be viewed as an effort to emulate the in-
nate ability of humans to leverage previously acquired knowledge
when learning new concepts [7, 6]. For instance, learning to ride a
motorbike may require less training if an individual already knows
how to ride a bicycle. Traditional methods for few-shot learning
aim to take advantage of prior knowledge about certain categories
(e.g., bicycle riding in the previous example) in order to learn new
ones (e.g., motorbike riding in the previous example) [6]. Inter-
estingly, this machine learning approach has attracted a lot of in-
terest in the field of bioacoustics, particularly for tasks related to
sound event detection or species classification [8]. In this domain
it is very common to encounter large acoustic datasets that are very
time consuming to annotate and contain highly imbalanced classes
(i.e., events with with infrequent occurrences versus highly recur-
rent events) [8].

Typical approaches to few-shot learning consist of using pre-
trained systems with a (large) set of known classes and re-training
them with few—usually between two and five—shots (i.e., exam-
ples) by means of different algorithms such as meta-learning and/or
prototypical networks [8, 9]. These algorithms are still data hungry
[5] and strongly rely on the particular tricks and data used in this
pre-training process [8]. The purpose of this work is to explore the
benefits of skipping the pre-training stage in few-shot learning for
acoustic data and solely training the system with five shots of data
(as positive samples) plus the silence surrounding each of them (as
negative samples). To obtain reference values, this work has been
contextualized in the Task 5 [10] of the DCASE Challenge 2023 -
Few-shot bioacoustic event detection1 that challenges participants
to detect and classify vocalizations of animals using five examples
(i.e., shots) of each one of the species. For the sake of this work, the
Training set provided by the challenge organizers has been left aside
on purpose and different classifiers (i.e., ResNet, ProtoNet, and
XGBoost) have been trained using the aforementioned five shots
from the Validation set. More specifically, every audio file has been
used to train a model. Obtained results have been compared to the
DCASE baseline for Task 5 that features a prototypical network.
This work enables researchers to assess and quantify the benefits—
in terms of F1-score—of the pre-training process in few-shot learn-
ing for this particular challenge.

The remainder of this paper is organized as follows. Section
2 describes the methodology for data collection and the selection
of the classifiers. Next, Section 3 presents the experimental results
and their comparison with the DCASE baseline. Finally, Section 4
concludes the paper.

1https://dcase.community/challenge2023/task-few-shot-bioacoustic-
event-detection
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2. METHODOLOGY

This section delves into the methodology employed in this few-shot
learning study. We start by exposing the data collection as well as
the preprocessing steps. Moreover, we introduce the experimental
setup and the learning methods implemented. To end up, we show
the prototypical loss used in the experimentation and its mathemat-
ical sense in order to classify every event.

2.1. Data Collection and Preprocessing

Data used in this study are obtained from the Validation set of Task
5 DCASE Challenge 2023 - Few-shot bioacoustic event detection.
The dataset specifically focuses on animal species detection using
only five positive examples. The audio files are collected from vari-
ous sources and are annotated with the corresponding species labels.
Available data are split into three datasets: Training, Validation, and
Test. Note that classes in the Validation set are not available in the
Training set. In the Validation set, unlike in the Training Set, only
positive or negative labels are considered. That is, there is no more
than one species per audio file. Therefore, the objective will be to
train a model that is able to discern whether a given event is a vocal-
ization or not. Note that in this exploratory work, the Training set is
intentionally neglected, and only the Validation set is used for train-
ing the learning methods. This leads us to an “extreme” few-shot
learning where one model is created and trained for each audio file
with the task of detecting the corresponding vocalization. Also, it is
worth mentioning that the Test set has not been used as the complete
annotations are not publicly available.

Before conducting the experiments, we have conducted some
preprocessing steps. This involves computing the first five positive
event spectrograms labeled with positive class, as well as five neg-
ative samples. Negative spectrograms are computed from intervals
of silence or noise between the first five positive vocalizations of a
given duration. All spectrograms are equally sized and computed
using the duration of the smaller known positive or negative sample
in the few-shot samples of each audio. Figure 1 illustrates an exam-
ple of this preprocessing step. In Figure 1, the smallest sample is the
4th negative. As we are using the minimum duration event as win-
dow size for obtaining the spectrograms, larger events will result
split in more spectrograms, so the model may be trained with more
than 5 positive and negative spectrograms belonging to the same
sample. To avoid class imbalance, the number of positive and neg-
ative spectrograms is always the same, being the class that presents
less samples the one that limits the amount of data of each category.

2.2. Learning Methods

Three different learning methods have been employed in this study
to explore the benefits of using only the initial five shots of audio
data in the Validation set for training:

2.2.1. ResNet Architecture with Prototypical Loss

The ResNet architecture [11], a popular deep neural network, is
utilized in combination with the prototypical loss function. This ap-
proach aims to learn a feature representation space where examples
from the same category are grouped together. The ResNet model
is initially pre-trained on a large-scale dataset (ImageNet) and then
fine-tuned using the limited training data from the first five shots
(positive and negative) of the audio files.

Figure 1: Extraction of positive (POS) and negative (NEG) samples
from an audio file.

2.2.2. ProtoNet

ProtoNet [12] is a few-shot learning algorithm that builds proto-
type representations for each category based on a few labeled ex-
amples. It learns to classify new instances by computing similar-
ity measures between the prototypes and the query samples. The
ProtoNet uses an encoder, which is composed of multiple convo-
lutional blocks. Each convolutional block includes a convolutional
layer, batch normalization layer, ReLU activation function, and a
max pooling layer. These layers are applied sequentially to the in-
put data, transforming it and extracting meaningful features. The
number of convolutional blocks can vary, but in this architecture,
there are four convolutional blocks. In this study, a ProtoNet is
trained with the initial five shots for each audio file and the first five
computed negative samples.

2.2.3. XGBoost Classifier

XGBoost [13] is a gradient-boosting framework that is known for its
high performance in various machine learning tasks. In this work,
we aim to train a XGBoost classifier to learn from the first five shot
spectrogram patterns as well as from the first five silences and make
predictions on new instances.

2.3. Prototypical Loss

The prototypical loss, which has been used for training the ResNet
and the ProtoNet, is a mathematical formulation used in few-shot
learning tasks. Its objective is to train a model that can effectively
classify new instances from unseen classes with only a small num-
ber of labeled examples. In this loss function, support examples are
selected for each class in the Validation set. These support exam-
ples are used to define the characteristics of each class. The support
examples of each class are averaged together to create a prototype
representation, which serves as the centroid or central point of the
support examples for that class (see Equation 1).

cj =
1

Ns

Ns∑
i=1

xij (1)
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Precision Recall F1-score
Audio File (%) (%) (%)
Overall ResNet 12.19 53.95 18.13
Overall ProtoNet 33.41 66.15 37.30
Overall XGBoost 31.19 64.26 36.53
Overall DCASE Baseline 22.1 49.01 28.31

Table 1: Overall percentage of Precision, Recall and F1-score of the
3 evaluated models and the DCASE Prototypical network baseline.

The remaining examples for each class, which were not used as
support examples, are considered as query examples. The goal is to
classify these query examples based on their similarity to the pro-
totypes. In this case, for the similarity, Euclidean Distance is used.
The prototypical loss is obtained by computing the mean log prob-
ability of the negative distances mentioned early for each ground
truth class (see Equation 2). This loss encourages the model to as-
sign high probabilities to the correct classes for the query examples.
That is, this loss helps the model to project samples in an embedding
space where query samples should lay near its ground truth proto-
type. In addition to the classification loss, a regularization term is
added to the loss function. This term promotes compactness in the
prototype representations by penalizing their norm.

In Equation 2 Nq represents the number of query samples. The
numerator represents the exponential of the distance between the
model output for query sample i and its corresponding prototype
ck. The denominator is formed by the sum of the exponential of
all minus distances between query sample i and the rest of protot-
pyes. Finally λ is the regularization term that multiplies the norm
of prototypes set.

L = − 1

Nq

Nq∑
i=1

log

(
exp(−d(fϕ(xi), ck)∑
k′ exp(−d(fϕ(xi), ck′)

)
+ λ∥c∥ (2)

3. EXPERIMENTAL RESULTS

This section explains which metrics have been used and the ob-
tained results of the experimental evaluation.

3.1. Performance Evaluation Metrics

To assess the performance of the learning methods, the following
evaluation metrics are employed: precision, recall, and F1-score.
Precision and recall assess the algorithm’s ability to correctly clas-
sify positive instances and retrieve all relevant instances, respec-
tively. The F1-score combines both precision and recall into a sin-
gle metric. For computing those metrics, the True Positive, False
Positive and False Negative rates of each audio file were obtained.
The individual metrics of each audio file of the dataset have been
calculated using the code provided for Task 5 2023 of the DCASE
challenge, which is explained in [10]. After obtaining the individual
metrics for every audio file, the metrics were averaged to obtain an
overall score and thus be able to compare the different models.

3.2. Results and Analysis

Table 1 provides an overview of the performance of our three mod-
els. ResNet achieved a precision of 12.19%, indicating a poor
ability to correctly identify positive instances. The recall score of

Dataset POS Samples NEG Samples

PB

ME

HB

Figure 2: Positive (POS) and negative (NEG) spectrogram samples
for each one of the datasets (PB, ME, HB) of the Validation set.

53.95% suggests that it captured a moderate proportion of relevant
instances. The resulting F-measure was 18.13%, reflecting its over-
all performance.

ProtoNet performed better than ResNet, with a precision of
33.41% and a recall of 66.15%. This means ProtoNet had a higher
ability to identify positive instances and capture relevant instances.
As a result, it achieved an F-measure of 37.36%.

XGBoost showed similar performance to ProtoNet, with a pre-
cision of 31.19% and a recall of 64.26%. Its F-measure was 36.53%,
indicating a very similar effectiveness to ProtoNet. However it is
important to point out that XGBoost requires less than the half of
the training time than the ProtoNet and, also, it can be trained on a
CPU with a reasonable amount of time.

Furthermore, it is worth noting that all the models presented
in this study achieved higher recall metrics compared to the Pro-
totypical network Baseline provided by DCASE Task 5 (49.01%).
However, in terms of precision and F-measure, only the ProtoNet
and XGBoost models outperformed the DCASE baseline that was
pre-trained with the Training dataset.

In summary, ProtoNet and XGBoost outperformed ResNet in
terms of precision, recall, and F-measure, with ProtoNet achieving
the highest F-measure among the three models. Generally, these
models are thought to be deployed in low-complexity edge devices
that can be trained and used in a specific environment. For that pur-
pose, ProtoNet is easier to deploy in a low-complexity device due
to its simpler architecture and lower computational requirements. It
has fewer parameters and can run efficiently on devices with limited
resources. On the other hand, at inference time, XGBoost requires
more computational resources and may be more challenging to de-
ploy on low-complexity devices.

In terms of a per-audio analysis, the F1-scores for each model
and audio file have been computed and summarized in Table 2. All
three presented models struggle at detecting correctly the PB dataset
(blackbirds). By far, this dataset presents the worst results out of the
three datasets, As it can be observed, the highest score is obtained
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F1-score F1-score F1-score F1-score
Dataset Animal Audio File ResNet(%) ProtoNet (%) XGBoost (%) Baseline (%)
PB Blackbirds BUK1 20181011 001004.wav 0.53 1.26 0.41 2.09

BUK1 20181013 023504.wav 0.11 0.22 0.14 5.72
BUK4 20161011 000804.wav 0.17 0.37 0.14 0.35
BUK4 20171022 004304a.wav 4.04 0.49 0.46 19.35
BUK5 20161101 002104a.wav 7.68 1.88 1.88 7.67

Song Thrush BUK5 20180921 015906a.wav 0.14 0.21 0.21 3.38
ME Meerkats ME1.wav 13.45 4.32 2.04 3.48

ME2.wav 56.25 29.14 46.38 19.51
HB Mosquitos R4 cleaned recording 13-10-17.wav 39.08 78.98 70.27 32.43

R4 cleaned recording 16-10-17.wav 17.92 60.24 57.83 58.33
R4 cleaned recording 17-10-17.wav 15.70 67.40 64.81 10.37
R4 cleaned recording TEL 19-10-17.wav 10.86 80.00 38.03 67.54
R4 cleaned recording TEL 20-10-17.wav 36.20 88.47 71.79 18.18
R4 cleaned recording TEL 23-10-17.wav 16.03 91.93 76.24 72.48
R4 cleaned recording TEL 24-10-17.wav 55.88 81.15 80.91 72.32
R4 cleaned recording TEL 25-10-17.wav 31.09 35.61 86.27 37.65
file 423 487.wav 4.53 35.45 46.01 59.88
file 97 113.wav 16.67 15.35 12.84 18.93
Overall Scores 18.13 37.30 36.53 28.31

Table 2: Percentage (%) of F1-score per audio file of the Validation set.

by ResNet with a 7.68% of F-measure. This also happens when us-
ing the DCASE Baseline, even though in that case there is an audio
file that achieved an F1-score of up to 19.35%. To motivate this be-
haviour, Figure 2 shows an example of positive (POS) and negative
(NEG) spectrograms of this dataset. As it can be observed, the PB
dataset is the one that presents more noise, with the bird vocaliza-
tion being almost masked by the background noise. Visually, it is
even hard to distinguish the difference between the two of them (it
is the yellowest flat line on the top part of the spectrogram). With
the obtained spectrograms, the presence of noise in the PB audio
files might have affected the models’ ability to extract relevant fea-
tures and make accurate predictions, resulting in the obtained lower
F1-scores. Covnersely, in the ME (Meerkats) category, the ResNet
model obtained an F1-score of 13.45% in one audio file, which out-
performed ProtoNet (F1-score of 4.32%) and XGBoost (F1-score
of 2.04%) in the same file. On the other hand, the XGBoost model
performed exceptionally well in the other file (ME2.wav) with an
F1-score of 29.14%, surpassing the scores of ResNet (F1-score of
56.25%) and ProtoNet (F1-score of 46.38%). In average, the three
presented models obtain better results than the DCASE baseline
(except for the first audio file and the XGBoost model). Finally, for
the HB (Mosquitos) category, the ResNet model achieved an F1-
score of 39.08%, followed by ProtoNet with 78.98%, and XGBoost
with 70.27%. The F1-scores in this category indicate that ProtoNet
performed better than the other two models and the baseline.

When interpreting the results, it is crucial to consider the chal-
lenging nature of the PB audio files (very short vocalizations, back-
ground noise) and the impact they had on the models’ performance.
In noisy scenarios, it may be necessary to explore additional pre-
processing techniques or consider using specialized models or al-
gorithms specifically designed to handle such conditions. In this
work, PCEN [14] was evaluated as a possible technique to mitigate
noise, but it was discarded as it did not significantly improve the
results. It is also important to consider that every audio has an inde-
pendent model, so this approach is highly affected by the first initial
five shots for building a solid basis to predict the rest of the audio.

4. CONCLUSION

In this study, we explored the task of bioacoustic events detection
using few-shot learning techniques. Every model was trained using
solely the first five positive examples of animal vocalizations as well
as the first five silences (where silence means absence of the species
to be detected) of every audio of the Validation set of Task 5 DCASE
Challenge 2023, meaning that the Training set was not used.

Three learning methods have been evaluated: ResNet, Pro-
toNet, and XGBoost and compared to the DCASE baseline.

The results demonstrated that ProtoNet and XGBoost outper-
formed ResNet in terms of precision, recall, and F1-score. ProtoNet
achieved the highest F-measure among the three models, indicating
its effectiveness in discerning positive instances and capturing rele-
vant examples. This leads us to think that simpler models in terms
of parameters perform better than complex ones in few-shot learn-
ing scenarios where the training examples are limited. In general,
obtained results surpass the DCASE baseline.

However, it is important to note that the presence of background
noise, especially in the PB dataset, supposed a challenge to the mod-
els’ performance. This highlights the need for additional prepro-
cessing techniques and specialized models to handle such challeng-
ing conditions.

Future work should focus on improving data preprocessing
techniques (e.g., filtering denoising algorithms) and exploring ad-
vanced few-shot learning methods. Moreover, it should be analysed
whether expanding the dataset through data augmentation results in
better performance.
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