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ABSTRACT

The Conformer architecture has achieved state-of-the-art results in
several tasks, including automatic speech recognition and automatic
speaker verification. However, its utilization in sound event detec-
tion and in particular in the DCASE Challenge Task 4 has been
limited despite winning the 2020 edition. Although the Conformer
architecture may not excel in accurately localizing sound events, it
shows promising potential in minimizing confusion between differ-
ent classes. Therefore, in this paper we propose a Conformer opti-
mization to enhance the second Polyphonic Sound Detection Score
(PSDS) scenario defined for the DCASE 2023 Task 4A. With the
aim of maximizing its classification properties, we have employed
recently proposed methods such as Frequency Dynamic Convolu-
tions in addition to our multi-resolution approach, which allow us
to analyse its behaviour over different time-frequency resolution
points. Furthermore, our Conformer systems are compared with
multi-resolution models based on Convolutional Recurrent Neural
Networks (CRNNs) to evaluate the respective benefits of each ar-
chitecture in relation to the two proposed scenarios for the PSDS
and the different time-frequency resolution points defined. These
systems were submitted as our participation in the DCASE 2023
Task 4A, in which our Conformer system obtained a PSDS2 value
of 0.728, achieving one of the highest scores for this scenario among
systems trained without external resources.

Index Terms— DCASE 2023, Sound Event Detection, Con-
former, PSDS, Multi-resolution, Model fusion

1. INTRODUCTION

Sound Event Detection (SED) is the task that aims to detect and
classify different sound events present within an audio clip. Al-
though research in SED has a long history, the last few years have
witnessed an increasing interest in the field, motivated in part by
the publication of Google Audio Set [1] and the yearly challenges
and workshops organized by the DCASE community [2]. This pa-
per is centered in the context of one of these challenges, in particular
the DCASE Task 4A: Sound Event Detection with Weak Labels and
Synthetic Soundscapes. The goal of this task is to evaluate SED sys-
tems by employing both real and synthetic recordings which contain
10 sound event classes that can be found in a domestic environment.
Besides, it tackles the issue of employing unlabeled data as well as
different types of annotations: strong labels that provide temporal
information (timestamps) along with the sound event category, and
weak labels which solely indicate the category.

The metric employed for evaluating SED systems in this task
is the Polyphonic Sound Detection Score (PSDS) [3], that relies
on the intersection between detected and annotated sound events.
Considering that it can be tuned for evaluating different properties
of a SED system, two PSDS scenarios are proposed for the DCASE
Challenge 2023 Task 4A. Whereas the first one (PSDS1) focuses on
a fast reaction upon a sound event, requiring highly accurate local-
ization, the second scenario (PSDS2) aims to avoid the confusion
between classes, and it is not strict about timing errors.

Over the last few years, different architectures have been pro-
posed to address this task. Since 2018, the baseline is based on a
Convolutional Recurrent Neural Network (CRNN) [4], which em-
ploys CNNs for extracting local characteristics and RNNs to exploit
temporal dependencies. Architectures based on attention mecha-
nisms such as the Transformer [5] or the Conformer (Convolution
Augmented Transformer) [6] have also been explored for this task.
The Conformer architecture has been successfully employed by re-
cent state-of-the-art models in tasks such as automatic speech recog-
nition (ASR) [7] and automatic speaker verification (ASV) [8]. In
the field of sound event detection, it achieved promising results win-
ning the DCASE Challenge Task 4 in 2020 [9]. However, in the sub-
sequent editions it was scarcely used, to the extend that last year we
were the only team that submitted systems based on this architec-
ture [10]. Although our experiments revealed a better performance
of CRNN-based systems in terms of PSDS1, we observed the po-
tential of the Conformer at classifying sound events. Therefore,
in this paper we propose a continuation to our previous research
by optimizing the Conformer architecture towards the PSDS2 and
analysing its performance following our multi-resolution approach.

For this purpose, we introduce the Conformer architecture and
describe the methodologies employed for its optimization in Sec-
tion 2. The results of our experiments are presented and analysed
in Section 3. Finally, Section 4 highlights the salient conclusions
derived from this investigation.

2. PROPOSED METHODS

The Conformer (Convolution-Augmented Transformer) was de-
signed with the aim of building an attention-based network capable
of extracting both local and global features. For this purpose, a con-
volution module is added to the Transformer backbone. To solve
temporal confusion, the relative positional embedding proposed for
the Transformer-XL [11] is added to the global content-based at-
tention mechanism. While this approach initially appeared to be
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highly promising for addressing the detection and classification of
sound events, the Conformer has exhibited limitations in accurately
localizing timestamps, resulting in a lower performance in terms of
PSDS1 when compared with CRNNs. However, the Conformer has
shown a great ability at classifying correctly each sound event, even
when two sounds are similar or noise is present in an audio clip.

Considering that the main weakness of the Conformer architec-
ture is the lack of temporal resolution, we propose to optimize a
Conformer-based system towards the PSDS2. To accomplish this
objective, we employ a multi-resolution approach to assess the sys-
tem’s effectiveness across various time-frequency resolution set-
tings. Considering the pronounced influence of median filtering on
the temporal resolution of a SED system’s output, we adapt this
post-processing technique to the scenario we are targeting. To eval-
uate the proposed methods in the framework of the DCASE Chal-
lenge Task 4A, we compare the performance of our Conformer sys-
tems with a multi-resolution version of the official baseline model
based on CRNNs.

2.1. Optimized Conformer for PSDS2

Our Conformer model is based on the DCASE 2020 Task 4 winner
[9], which consist of a CNN for feature extraction with 4 conformer
blocks stacked. Additionally, they employ a tagging token similar
to the classification token used in BERT [12] to summarize the weak
label predictions through the attention layers.

To improve the PSDS2 value, we perform a hyperparameter
tuning setting as objective this metric, leading to an optimal config-
uration of 7 Conformer blocks with 4 attention heads each and an
encoder dimension of 144. Additionally, we substitute the CNN-
based feature extractor with a Frequency Dynamic Convolution
Neural Network (FDY-CNN) [13] to improve the classification of
non-stationary sound events. For the FDY-CNN we employ con-
text gating as the activation function and define a time-resolution
reduction of 8 by adding one more average-pooling layer along the
temporal dimension. Data augmentation techniques have also been
applied to avoid confusion between classes. By this means, we em-
ploy both Mixup and FilterAugment [14] with a probability of 50%
of applying them to the training data.

As semi-supervised learning, we utilize the mean-teacher
method [15] for training both architectures. This method employs
two identical models: student and teacher, whose weights are the
exponential average weights of the student. By minimizing a con-
sistency cost between the predictions of the student and teacher, the
model learns to generate targets from unlabeled data. Generally, the
teacher model achieves a more consistent learning trajectory across
epochs, leading to a superior performance during testing. Thus,
model selection is performed over the teacher network, adjusting
the objective metric based on the specific scenario we are target-
ing. Whereas for the CRNN we employ the one set for the baseline
(F1-score based on intersection), our Conformer systems use the
PSDS2.

2.2. Multi-resolution analysis

In previous research, we proposed a multi-resolution approach
which consist on varying the parameters employed for the ex-
traction of mel-spectrogram features. Our multi-resolution ap-
proach has demonstrated the advantages of employing distinct time-
frequency resolutions that align with the characteristics of each
PSDS scenario or sound event category. Given that the main weak-

Resolution T++ T+ BS F+ F++

N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 256 384 512
nmel 64 96 128 192 256

Table 1: FFT length (N ), window length (L), window hop (R) and
number of Mel filters (nmel) of the five resolution points employed
for the feature extraction. N , L, and R are reported in samples,
using a sample rate fs = 16000 Hz.

ness of the Conformer seems to be the time resolution of its detec-
tions, we will explore how the different time-frequency resolutions
impact the performance of this architecture.

Considering the trade-off between time and frequency resolu-
tion of the Short Time Fourier Transform (STFT), we design a total
of 5 resolution points such that they span a range from higher fre-
quency resolution to higher time resolution, relative to the original
resolution utilized by the baseline system.

As presented in Table 1, we establish the resolution of the base-
line system as the intermediate one (referred to as BS). From this
one we define four additional resolution points. Among these, two
are designed to double the resolution in frequency (F++) and in
time (T++), whereas the remaining two are halfway points between
BS and F++ (F+) or T++ (T+).

Single-resolution models are obtained by training each sys-
tem with one of the points mentioned above. They can be com-
bined into multi-resolution systems by frame-wise averaging the se-
quences of scores. As this combination is performed frame-wise,
the sequences must have the same length. However, the differ-
ent time resolutions defined in Table 1 lead to different lengths of
the score sequences: T1, T2, ...TN . To handle this issue we per-
form a linear interpolation of the sequences to the maximum length,
Tmax = max{T1, T2, ...TN}.

2.3. Class-dependent median filtering

Our multi-resolution approach is based on the fact that each sound
event class presents different temporal and spectral characteristics.
Therefore, smoothing the decoded predictions employing the same
median filter for every class would be counter-productive. Addition-
ally, each PSDS scenario can benefit from different window lengths.
Whereas shorter median filters can improve the localization of on-
sets and offsets, longer windows may be advantageous for avoiding
potential cross-triggers and, therefore, enhance the PSDS2.

For this purpose, we have employed a class-dependent median
filtering in which the optimal lengths of each class are computed
based on one of the PSDS scenarios, iterating over a range from 1
to 29 frames on the DESED Validation set.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

For our experimental results we will use the DESED (Domestic En-
vironment Sound Event Detection) dataset [16], which is the data
proposed for the DCASE Task 4A. This dataset contains both real
recordings, which are obtained from Google AudioSet [1], and syn-
thetically generated audios employing the Scaper library [17]. The
training data is composed of a synthetic strongly-labeled set (10,000
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PSDS DTC GTC CTTC αCT αST emax

Scenario 1 0.7 0.7 0.0 - 1.0 100
Scenario 2 0.1 0.1 0.3 0.5 1.0 100

Table 2: Parameter configuration for the PSDS scenarios.

clips), a real weakly-labeled set (1,578 clips) and a real unlabeled
set (14,412 clips).

To select the best model during the training procedure, the syn-
thetic validation set (2,500 clips) together with a 10% of the weakly-
labeled set is employed. For testing, we use the validation set,
which was constructed to match the clip-per-class distribution of
the weakly labeled training set. It consists of 1,168 real audio clips
annotated with strong labels.

3.2. Evaluation framework

The Polyphonic Sound Detection Score (PSDS) [3] was proposed
for the DCASE Challenge 2021 Task 4 to overcome the limitations
of event-based metrics, which rely on the overlap of collars and de-
pend on a unique operating point. For this purpose, they define the
Detection Tolerance Criterion (DTC) and the Ground Truth Inter-
section Criterion (GTC), which measure percentages of intersection
between ground-truth labels and detected sound events. Addition-
ally, they introduce the Cross-Trigger Tolerance Criterion (CTTC)
to consider data bias by distinguishing the subset of false positives
that intersect with labeled events, named as cross-trigger.

By modifying the threshold of intersection to these criteria, dif-
ferent properties of a SED system can be evaluated. As it is shown
in Table 2, PSDS1 is defined with higher values for the DTC and
GTC to measure a high intersection between labels and predictions.
Conversely, these values are lower for the PSDS2 but in this case,
the CTTC is taken into account to penalize the confusion between
classes, whose cost is influenced by αCT .

Results are provided for the recently proposed threshold-
independent PSDS [18] over the DESED Validation set. Each
model has been trained with three different initializations with the
aim of estimating the performance’s standard deviation. Moreover,
we have compared the complexity of individual systems by calcu-
lating the Multiply–Accumulate Operations (MACs) for 10 seconds
of audio prediction, a metric that was introduced in this year’s eval-
uation.

3.3. Single-resolution results

The performance of both architectures for the different time-
frequency resolution points defined is presented in Table 3. It is
clearly seen that CRNN-based systems achieve higher PSDS1 re-
sults, evidencing the Conformer’s limited temporal precision, which
is accentuated when employing features that are not temporally en-
hanced (F++). However, the Conformer system clearly outper-
forms the CRNN model in terms of PSDS2. Moreover, our Con-
former system exhibits a reduced level of complexity in terms of
Multiply-Accumulate operations (MACs). This metric is also influ-
enced by the different resolution points, with lower values observed
for frequency enhanced points, as they present shorter input lengths.
All Conformer results in Table 3 use FDY, which provides enhanced
performance as shown in Table 4.

Figure 1a shows a prototypical example highlighting the advan-
tages and limitations of the different architectures. The CRNN ac-
curately predicts the location of each event but confuses the second

CRNN PSDS1 PSDS2 MACs
F++ 0.316 ± 0.004 0.561 ± 0.012 0.891G
F+ 0.347 ± 0.015 0.583 ± 0.022 0.905G
BS 0.369 ± 0.006 0.579 ± 0.015 0.930G
T+ 0.368 ± 0.039 0.550 ± 0.066 1.772G
T++ 0.374 ± 0.003 0.575 ± 0.015 1.824G
Conformer PSDS1 PSDS2 MACs
F++ 0.194 ± 0.022 0.688 ± 0.015 0.588G
F+ 0.224 ± 0.030 0.696 ± 0.030 0.633G
BS 0.263 ± 0.020 0.688 ± 0.018 0.879G
T+ 0.251 ± 0.019 0.682 ± 0.014 1.147G
T++ 0.349 ± 0.029 0.668 ± 0.015 1.331G

Table 3: Average and standard deviation results of individual CRNN
and Conformer systems trained with different resolution points and
initialized with diverse seeds over the DESED Validation set. Inde-
pendent median filter was applied.

Architecture PSDS1 PSDS2
CNN + Conformer 0.220 ± 0.027 0.607 ± 0.018

FDY-CNN + Conformer 0.263 ± 0.020 0.688 ± 0.018

Table 4: Effects of employing FDY for the CNN-based feature ex-
tractor over the DESED Validation set.

one by predicting a Blender instead of a Vacuum cleaner. This de-
tection is considered a cross-trigger and will downgrade the PSDS2
value. In contrast, the Conformer predicts correctly the presence of
both sound events in the clip, but it lacks temporal precision, lower-
ing the PSDS1 results. The effect of the low resolution in time of the
Conformer is even more visible in Figure 1b, where the prediction
of continuous short events such as Alarm bell ringing is grouped
into a single one.

Additionally, results show that each PSDS scenario benefits
from a particular resolution point independently of the architecture
employed. As expected, PSDS1 benefits from higher temporal res-
olution, whereas an enhancement in frequency resolution improves
the results for PSDS2.

3.4. Multi-resolution results

Single-resolution models are combined following the process de-
scribed in Section 2.2 in order to obtain multi-resolution systems.
In Table 5 the results of six combinations with up to five resolu-
tion points are presented individually for CRNNs and Conform-
ers. Multi-resolution not only enhances the performance of single-
resolution models, but also evidence that the combination of certain
resolution points is more effective for a specific PSDS scenario. For
both architectures, the PSDS1 is enhanced when employing a com-
bination of resolutions enhanced in time. Conversely, the PSDS2
benefits from a combination of the five resolution points defined,
which is logical as some sound events can be better distinguished
by their spectral behaviour while others are better recognized based
on their temporal properties.

3.5. Results with task-dependent median filtering

We have experimented with the class-dependent median filter-
ing described in Section 2.3 in our best single-resolution systems
(CRNN T++ and Conformer F+) and in our two optimal multi-
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(a) YG3yk9UXVB9g 20.000 30.000.wav (b) Y9OqtuFGCCR8 30.000 40.000.wav

Figure 1: Ground truth, CRNN and Conformer predictions for two audio recordings from the DESED Validation set considering the baseline
resolution.

CRNN Confomer
Resolutions PSDS1 PSDS2 PSDS1 PSDS2
3res F+, BS, T+ 0.397 ± 0.010 0.615 ± 0.012 0.275 ± 0.012 0.719 ± 0.017
3res-F F++, F+, BS 0.375 ± 0.007 0.617 ± 0.013 0.255 ± 0.015 0.722 ± 0.014
3res-T BS, T+, T++ 0.401 ± 0.007 0.611 ± 0.014 0.329 ± 0.013 0.715 ± 0.017
4res-F F++, F+, BS, T+ 0.390 ± 0.007 0.623 ± 0.012 0.268 ± 0.010 0.724 ± 0.015
4res-T F+, BS, T+, T++ 0.405 ± 0.005 0.624 ± 0.013 0.309 ± 0.017 0.721 ± 0.016
5res F++, F+, BS, T+, T++ 0.398 ± 0.005 0.632 ± 0.011 0.306 ± 0.006 0.727 ± 0.015

Table 5: Average and standard deviations results for three initialization seeds of multi-resolution combinations of CRNN and Conformer
systems over the DESED Validation set. Fixed median filter was applied.

Obj. Model PSDS1 PSDS2

PSDS1 CRNN T++ 0.387 ± 0.004 0.585 ± 0.012
CRNN 4res-T 0.416 ± 0.005 0.626 ± 0.016

PSDS2 Conformer F+ 0.164 ± 0.018 0.740 ± 0.033
Conformer 5res 0.243 ± 0.007 0.781 ± 0.017

- Baseline 0.359 ± 0.006 0.562 ± 0.012
ConformerSED [19] 0.341 ± 0.013 0.576 ± 0.015

Table 6: Effects of employing a class-dependent median filtering
on our submitted systems. The Obj. column indicates the objective
metric employed to optimize the median filter length of each class.
The official baseline and a reproduction of the Miyazaki et al. Con-
former system [9] are included for comparison purpose. Results are
provided over the DESED Validation set.

resolution systems (CRNN 4res-T and Conformer 5res). Consid-
ering that the set of median filters learnt vary depending on which
metric is set as objective, we have considered for each system the
same PSDS scenario for which it has been designed: PSDS1 for
CRNN models and PSDS2 for Conformers.

As we present in Table 6, the systems optimized for PSDS1 im-
prove their results in this metric when the median filters are tuned
according the best class-wise PSDS1 performance (from 0.374 to
0.387 in CRNN T++, and from 0.405 to 0.416 in CRNN 4res-
T). Additionally, this criterion is helpful for the PSDS2 as well.

When it comes to the systems optimized for the second scenario,
their PSDS2 value is also enhanced when the median windows are
tuned class-wise (from 0.696 to 0.740 in Conformer F+, and from
0.727 to 0.781 in Conformer 5res). However, the median filters
learnt with this criterion considerably downgrade the performance
for PSDS1.

4. CONCLUSIONS

In this paper we presented the benefits of the Conformer architec-
ture for sound event detection by optimizing a system towards the
second scenario proposed for the DCASE Challenge 2023 Task 4A.
Among the submitted systems without employing external data, our
Conformer system achieves one of the best PSDS2 values over the
evaluation set (0.729).

Following our previous multi-resolution approach, we were
able to analyse its behaviour over different time-frequency reso-
lutions and compare its performance with a CRNN-based system.
Additionally, by employing this technique we not only demonstrate
that a multi-resolution ensemble can considerably enhance the re-
sults, but also revealed that the different PSDS scenarios bene-
fit from features that enhance either time or frequency resolution.
Therefore, we obtain the best PSDS1 when combining CRNN sys-
tems trained with resolution points enhanced in time, while our best
PSDS2 is obtained when combining the five resolutions defined for
the Conformer.
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