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ABSTRACT

Automated acoustic understanding, e.g., sound event detec-
tion and acoustic scene recognition, is an important research di-
rection enabling numerous modern technologies. Although there
is a wealth of corpora, most, if not all, include acoustic sam-
ples of scenes/events in isolation without considering their inter-
connectivity with locations nearby in a neighborhood. Within a con-
nected neighborhood, the temporal continuity and regional limita-
tion (sound-location dependency) at distinct locations creates non-
iid acoustics samples at each site across spatial-temporal dimen-
sions. To our best knowledge, none of the previous data sources
takes on this particular angle. In this work, we present a novel
dataset, the Spatio-temporally Linked Neighborhood Urban Sound
(STeLiN-US) database. The dataset is semi-synthesized, that is,
each sample is generated by leveraging diverse sets of real ur-
ban sounds with crawled information of real-world user behaviors
over time. This method helps create a realistic large-scale dataset,
and we further evaluate it through perceptual listening tests. This
neighborhood-based data generation opens up novel opportunities
to advance user-centered applications with automated acoustic un-
derstanding. For example, to develop real-world technology to
model a user’s speech data over a day, one can imagine utilizing
this dataset as the user’s speech samples would modulate by diverse
sources of acoustics surrounding linked across sites and temporally
by natural behavior dynamics at each location over time.

Index Terms— Audio Dataset, Sound Synthesis, Urban Sound,
Connected

1. INTRODUCTION
Understanding acoustic surroundings seamlessly influences our
daily life, e.g., recognizing different emergencies by distinct alert-
ing sounds. Besides, acoustic sounds also affect human mental
health, e.g., work productivity in a calm/noisy environment [1], and
psychological impact on our well-being as the change in stress level
[2]. Thus, understanding acoustic sounds plays a crucial role in our
life, which provides plentiful information to uplift environmental
awareness and life quality. Especially recent advanced techniques
and the support of superior hardware in deep learning show a promi-
nent performance on these acoustic contextual tasks.

Basically, these acoustic context tasks can be generally divided
into two categories, which are sound event detection (SED) and
acoustic scene classification. Specifically, a sound event detection
task aims to predict a short-term and precise event, e.g., a dog bark-
ing, a car passing by, or a cell phone ringing. Differing from that, an
acoustic scene classification task targets an environment-wise con-
textualization, e.g., on the street and in a coffee shop, which may
compound multiple sound events. Recently, for sound event de-

tection tasks, Turpault in [3] proposed to use weakly labeled data
where a top-performed system using a convolutional neural net-
work (CNN) model has achieved 42.7% F-measure. Besides, Ron-
chini et al. [4] integrated non-target events as auxiliary information
while training and greatly impacted the SED task. As for acoustic
scene classifications, DCASE has been predominantly focusing on
scene classification in DCASE challenge Task 1 [5, 6, 7, 8, 9, 10]
with constantly evolving their scope of interest within the task. Re-
cently, they have been curious about the scope of this task on low-
complexity approach [11] solutions, in which the top system com-
peted with 48 submissions from 19 teams in the challenge and ob-
tained 59.6% accuracy with 1.091 log loss. Both event detection and
scene classification tasks manifest great accuracy in understand-
ing the acoustic scenes/events with deep-learning-based models and
provide insights for real-world applications.

However, most of them focus solely on scenes and events only.
The currently published datasets used for similar tasks; only con-
tain short-term audio from random locations and times isolatedly.
None of them consider the inter-connectivity with locations nearby
in a neighborhood. For instance, TAU Urban Acoustic Scenes 2020
Mobile [9] is one such designed for the scene classification task, but
it lacks consistency in connectivity with its context of surrounding.
The UrbanSound dataset [12] presents sound events compound with
scrapped urban noises from the internet, which makes it diversely
localized but poorly inter-linked. URBAN-SED dataset [13] having
11 events is a synthesized dataset aimed to compensate the sparsity
of strongly annotated datasets; however, the same Brownian noise
as background for all soundscape with predefined artificial synthesis
settings barely justifies the real acoustic variation in an urban sur-
rounding. ESC50 [14] with recordings in 2000 short clips emerge as
one of the highest labeled environmental recording datasets bring-
ing distinct 50 classes. Highlighting isolated high-quality sound
events, the NIGENS dataset [15] brings 14 distinct sound event
classes, including strong annotations. Whereas both ESC50 [14]
and NIGENS [15] datasets are designed for SED tasks without the
context of surrounding. SINS dataset [16] equipped with 16 activi-
ties aimed at activity detection in domestic environments for smart
home applications. STARSS22 dataset [17] contains spatial record-
ings of real sound scenes collected in interiors, including temporal
and spatial annotation of 13 sound events. However, both SINS
[16] and STARSS22 [17] datasets sound recordings only in the in-
teriors, which limits prominent datasets for diversity in the applica-
tions. Unlike the above-mentioned datasets, SONYC-UST [18] has
attempted to build a dataset equipped with spatiotemporal metadata.
The dataset contains real-world recordings in New York City with
annotations defined using 23 tags based on New York City noise
code. The highlight of SONYC-UST is the spatiotemporal con-
text information that comforts monitoring the distribution of sound
tags. But primarily focused on the events considered to be noise
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in the urban environment, eliminating common sound events (e.g.,
Birds chirping) which are not considered noise. Also, the record-
ings are intuitively at outdoor locations limiting the SED applica-
tions to deal with the events in outdoor scenarios. Alternatively,
in this work, we bring a new perspective/angle to this field; we
consider an application-wise scenario that can be applied in a user-
contextualized, environment-aware closer to our daily life. That is,
many applications incorporating speech are published as well, e.g.,
Speech Enhancement applications, Automatic Speech Recognition
(ASR) applications, and Speech Separation Tasks. To mention,
an unsupervised federated learning approach proposed by [19] for
speech enhancement and separation with a release of LibriFSD50K
dataset. And Darius Petermann et al. in [20] introduce the sep-
aration of an audio mixture into speech, music, and sound effects
using their proposed dataset named Divide and Remaster. How-
ever, they integrate acoustic scenes/events into speech but in a non-
realistic and artificial manner. Whereas to do so, continuous record-
ing from real-life scenes is required, and even with the recordings
subsequently, it needs to be annotated for the event’s presence to be
useful for SED tasks. Nevertheless, collecting new and large-scale
recordings from the real world and annotating them is expensive,
cumbersome, and time-consuming. Synthesis becomes a more fea-
sible way to catch the scalability of existing speech datasets.

Hence, being a preliminary study to implement this idea, we de-
velop a framework for synthesizing a continuous real-world acous-
tic distributed sound surrounding. Henceforth, we proposed this
dataset with the inspiration to equip researchers with variable sur-
rounding sound in an environment closely resembles realistic pat-
terns. The proposed dataset models the small-scale connected sur-
rounding in urban areas. The detail of the work is organized as fol-
lows: Section 2 presents the details of the synthesis, Section 3 sum-
marizes the dataset and presents the analysis of the same, and with
an end note, Section 4 discuss the dynamic scaling of the dataset
with potential applications and concludes the present work.

2. METHODOLOGY
The proposed dataset is synthesized to represent a small-scale inter-
connected urban area. The synthesis framework is divided into Pre-
conditions, Traffic, and Scene Synthesis. Here Preconditions deal
with the requirements for the synthesis, Whereas the synthesis part
is broadly divided into Traffic and Scene Synthesis.

2.1. Preconditions
Being an interconnected urban sound database, it is important to
map the locations and patterns for scene-specific sound classes to
conceptualize. Hence we presented a map in Fig. 1 for the pro-
posed dataset; mapping both indoor and outdoor environments, 5
distinct locations were selected for synthesis representing a small-
scale interconnected urban area. Street, Metro Station, Park, School
Playground, and Cafe, represented by microphones M1, M2, M3,
M4, and M5, respectively, are simulated with 14 acoustic sound
classes. Of all classes, 6 represented the background, and 8 were
the events. Vehicle, Train, Pedestrian, Cafe Crowd, Children Play-
ing, Urban Park, Street Music, Phone Ring, School Bell, Car Horn,
River, Bird, Fountain, and Dog Bark are considered acoustic sound
classes. Train, Pedestrian, Cafe Crowd, Urban Park, River, and
Fountain are considered as background, and the rest are the events.
After a thorough review, the sound recordings for mentioned classes
are adopted from a suitable published dataset, as in Table 1. At the
same time, the pattern for the appearance of the sound classes Ve-
hicle, Car Horn, Street Music, Pedestrian, and Dog Bark is inspired

by the annotation from real-world distribution of the closely rel-
evant events from the SONYC [18]. And as for the background
sound at the synthesized locations Metro Station, Park, and Cafe
follows the google maps popular time index using LivePopular-
Times1 python package for the respective sound class. Specifically,
searching nearby Manhattan, e.g., ”subway in Manhattan” prompt
shows 18 results with the popular time index, which indicates the
people’s traffic at that location. That helps relate to the density of
background sound of the location, and taking the average for the
number of results gives a general idea about the trend of busyness.
Since the SONYC [18] data is mainly concentrated around Man-
hattan, searching for google maps popular times around that area
makes the distribution consistent with the base area. This distribu-
tion is obtained for a week in an hourly fashion, which makes it
convenient to design the density of events or the crowded nature of
the background in a similar fashion.

2.2. Traffic Synthesis
Temporal connection across microphone locations is shaped by
Traffic Synthesis. Autonomous from overall Scene Synthesis, Traf-
fic Synthesis synthesizes a controlled flow of vehicles by tracing
each vehicle’s course with calculated time for the appearance of the
same vehicle at another microphone that comes under the vehicle’s
track. There are 4 entry nodes considered for each vehicle to enter
the environment as EN1-EN4. Now considering the more or less
busy route, the path for the vehicle is decided with a random distri-
bution till it exits the environment at the diagonally opposite node to
its entry node. IDMT dataset [21] enriched with 4 different vehicle
sounds at 3 different known speeds is best suited for Traffic Syn-
thesis. Since the map in Fig. 1 is conceived with an approximated
distance for microphone locations, hence compiling the information
of speed, a good approximation for the timing is achieved by using
Speed = Distance

Time
. Following this set of conditions has equipped

us with a temporal correlation across the microphone locations.

2.3. Scene Synthesis
Audio at 5 different microphone locations is synthesized to assem-
ble a scene that furnishes realistic event patterns with the temporal
connection. A brief overview of the acoustic classes at each synthe-
sized location is given in Table 2. Following a realistic distribution
described in 2.1, the dense nature of the environment is compiled
in the synthesis by adding more audio segments on top of the same

1https://github.com/GrocerCheck/
LivePopularTimes.git

Table 1: Sound Classes and Dataset used for the synthesis

Sound Class Source Dataset

Vehicle IDMT Traffic [21]
Train, Cafe Crowd,

Urban Park
TUT Rare Sound
Events 2017 [22]

Pedestrian TAU Urban Acoustic
Scenes 2020 Mobile [9]

Children Playing, Street Music UrbanSound [12]
Phone Ring NIGENS [15]

School Bell, River,
Fountain FreeSound.org

Car Horn, Dog Bark UrbanSound8K [12]
Bird ESC-50 [14]

https://github.com/GrocerCheck/LivePopularTimes.git
https://github.com/GrocerCheck/LivePopularTimes.git
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Figure 1: Acoustic Synthesis Map

sound class. A maximum of 3 audio segments have been added to
represent the maximum dense structure. For the direct correlation
of which popularity index from Google map has scaled down and
quantized to an integer value to result in a range of 0-3. The dense
scaling factor represents how many same-class audio segments to
add for the background. On the other hand, the same factor for the
event is inspired by a scaled version of SONYC [18] data for visu-
alization of the event patterns, which indicates the number of sound
events from the same classes added. However, events that are out-
side the SONYC [18] study are designed manually, e.g., Children
playing and School bell class distribution in the School Playground
microphone location (M4) are designed manually by considering
school operating hours. The different sound classes merged to cre-
ate a scene are scaled with the different intensities which is inspired
by the inverse distance relationship with the sound intensity as in
eq.(1). Whereas I1, I2 are the original and synthesis sound inten-
sities, and d1, d2 are the respective distance of the recording from
the source. Since the sounds taken from datasets do not contain the
information regarding the distance of recording in detail, hence the
chosen factor d2 is scaled in terms of distance d1 and then verified
by manual listening for any resulting scaling change required. The
data shown in Table 3 indicate the distance scale for the particular

Table 2: Combination of sound classes present at different locations
throughout the week.

Location Day Sound Classes

Street Mon-Sun Vehicle, Pedestrian, Phone Ring, Car
Horn, Dog Bark

Metro
Station Mon-Sun Train, Pedestrian, Phone Ring

Park Mon-Sun
Vehicle, Pedestrian, Urban Park,
Street Music, Phone Ring, Car Horn,
Bird, Fountain, Dog Bark

School
Play-
ground

Mon-Sun
Vehicle, Pedestrian, Children Play-
ing, School Bell, Car Horn, River,
Bird, Dog Bark

Sat - Sun Vehicle, Car Horn, River, Bird, Dog
Bark

Cafe Mon-Sun Vehicle, Cafe crowd, Phone Ring,
Car Horn

sound class used in synthesis, e.g., intensity scaling factor 2 indi-
cates the audio event or background sound in synthesis audio will
be twice as distance with respect to the one in the raw sound itself.

I2 = I1

(
d1
d2

)2

, (1)

Overall, in the end, all the considered sound classes, after go-
ing through dense scaling and distance scaling processes, are added
with each other to synthesize the scenario, which has the tempo-
ral pattern and interconnection with locations. Hence equipped us
with one of its kind acoustic dataset designed to simulate the closely
connected neighborhood urban area.

3. EXPERIMENTAL RESULTS
A brief assessment of the proposed dataset is presented, divided into
a summary and analysis of the dataset. In the following sections,
we discuss the summary and distribution of STeLiN-US further; we
analyze it from a visual and human listener’s perspective.

3.1. Summary
Following our proposed semi-synthesis procedures, we generate a
Spatio-temporally Linked Neighborhood Urban Sound (STeLiN-
US) database and is made available online2. Containing intercon-
nected acoustic surroundings and scene-specific events, the pro-
posed dataset is equipped with 525 audio clips comprising 43 hr
45 min in total. Synthesized for location-specific scene surrounding
and adjunct with strong annotations for the events have reinforced
the proposed dataset to be equivalently used in both scene classifi-
cation and event detection tasks. Besides, embedding the time and
day information with the synthesized acoustic scene has lifted the
applicability from traditional tasks.

3.2. Analysis

3.2.1. Dataset Distribution
To visualize the distribution of each sound class in the final synthe-
sis with respect to synthesized microphone locations, a series of bar

2https://doi.org/10.5281/zenodo.8241539

Table 3: Scaling d2 = k*d1, considered k values for respective lo-
cations and sound class, where d1, d2 are the respective distance of
the recording from the source.

Locations
Sound Class Street M.Station Park School-P.G. Cafe

Vehicle 2 - 4 5 5
Train - 1 - - -

Pedestrian 1 1 3 4 -
Cafe Crowd - - - - 0.5

Children
Playing - - - 3 -

Urban Park - - 1 - -
Street Music - - 3 - -
Phone Ring 9 9 9 - 15
School Bell - - - 3 -
Car Horn 3 - 5 6 6

River - - - 4 -
Bird - - 2 3 -

Fountain - - 2 - -
Dog Bark 4 - 2 5 -

https://doi.org/10.5281/zenodo.8241539
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Figure 2: Average distribution of selected sound class in each synthesized location.
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Figure 3: Sound class distribution at each synthesized location
on (a) WeekDays (b) WeekEnds with corresponding annotators re-
spond for dense/ sparseness in (c) and (d) and equivalent respond
for naturalness in (e) and (f)

graphs are presented in Fig. 2. Following real environment distribu-
tion in sound classes, it showcases the distributed imbalance across
time, location, and sound class e.g., from Fig. 2 (a), the Street is less
busy during the morning than in late afternoon similarly in (e) cafe
is busier from morning to afternoon than in late evenings, which are
indeed the case in real life. Analogously, Fig. 2 can be compared
with Table 2, which explains the presence of each class at synthe-
sized microphone locations.

3.2.2. Listening Test
To validate the naturalness and sparseness of the proposed STeLiN-
US, we further conducted a listening test by human annotation. In
this experiment, a total of 50 audio samples (50 minutes in total)
are selected randomly from STeLiN-US but evenly distributed in
all synthesized microphone locations and times for this test. Pre-
cisely, all locations and time slots should present at least one time
in the listening test set. During the listening test, we define two
questions for annotators, including naturalness and sparseness. Nat-

uralness is annotated on a 5-Likert scale, where 1 represents strong
disagreement on the naturalness of audio (i.e., the audio sounds arti-
ficial), and 5 means strong agreement on naturalness (i.e., the audio
sounds natural). Similarly, sparseness is labeled by asking whether
the audio sounds in rush hour, which is a binary(yes/no) question
for them, and 0 for sparse, 1 for dense. In the overall listening test,
we include 6 unique annotators (2 females, and 4 males) in total.

Henceforth, to analyze the distribution in a systematic way, we
divide them into weekdays and weekends, as shown in Fig. 3 (a) &
(b), respectively. Fig. 3 (c) & (d) represent the Dense/Sparseness
results from three annotators (A1, A2, and A3) divided into week-
days and weekends, respectively. Similarly, Fig. 3 (e) & (f) is for
naturalness result. To have statistical results, we further compute
the average annotation among all the annotators and present their
standard deviation as well. Notably, we get 0.36 and 3.12 average
results for dense and naturalness, respectively, and similarly, we get
0.22 and 0.91 standard deviations. This conveys annotators agree
closely for dense and naturalness results with lower deviation at the
same time. It is amazing to observe the average naturalness result
is more than half of the max on the scale with the least deviation
among annotators depicting that even if the dataset is synthesized
one is still inclined to feel natural alike.

4. DISCUSSION AND CONCLUSION
The proposed synthesis approach cultivated with real-world user
behavior can be dynamically scaled to model any required envi-
ronment. Such wide adaptability can elevate application-specific
research solutions. Furnished with the real surrounding pattern dis-
tribution of sound classes, the proposed STeLiN-US dataset sim-
ulates the acoustic appearance of closely interconnected neighbor-
hoods in urban areas. This help in not only identifying the scenes
but also predicting acoustic scenarios. This accommodates the user-
centered applications, e.g., If combined with the ASR, the ASR
performance can be analyzed based on the location and time more
than that possible performance can be predicted beforehand based
on the prediction of the scene busyness. Hence this dataset can un-
veil many possible applications for the researcher. In contrast with
previously published datasets, portraying diversity across locations
yet interconnected and diverse events to truly justify the surround-
ing environment and still sound natural alike from the listening test
has made the proposed dataset unique and unmatched. Such incor-
poration of scene-specific events to replicate the real surrounding
environments facilitates researchers in testing trailblazing event de-
tection systems.
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[11] I. Martı́n-Morató, F. Paissan, A. Ancilotto, T. Heittola,
A. Mesaros, E. Farella, A. Brutti, and T. Virtanen,
“Low-complexity acoustic scene classification in dcase 2022
challenge,” 2022. [Online]. Available: https://arxiv.org/abs/
2206.03835

[12] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and tax-
onomy for urban sound research,” in 22nd ACM Interna-
tional Conference on Multimedia (ACM-MM’14), Orlando,
FL, USA, Nov. 2014, pp. 1041–1044.

[13] J. Salamon, D. MacConnell, M. Cartwright, P. Li, and J. P.
Bello, “Scaper: A library for soundscape synthesis and aug-
mentation,” in 2017 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2017, pp. 344–
348.

[14] K. J. Piczak, “Esc: Dataset for environmental sound
classification,” in Proceedings of the 23rd ACM International
Conference on Multimedia, ser. MM ’15. New York,
NY, USA: Association for Computing Machinery, 2015,
p. 1015–1018. [Online]. Available: https://doi.org/10.1145/
2733373.2806390

[15] I. Trowitzsch, J. Taghia, Y. Kashef, and K. Obermayer, “The
nigens general sound events database,” 2020.

[16] G. Dekkers, S. Lauwereins, B. Thoen, M. W. Adhana,
H. Brouckxon, T. van Waterschoot, B. Vanrumste, M. Ver-
helst, and P. Karsmakers, “The SINS database for detection
of daily activities in a home environment using an acous-
tic sensor network,” in Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2017 Workshop
(DCASE2017), November 2017, pp. 32–36.

[17] A. Politis, K. Shimada, P. Sudarsanam, S. Adavanne,
D. Krause, Y. Koyama, N. Takahashi, S. Takahashi,
Y. Mitsufuji, and T. Virtanen, “STARSS22: A dataset
of spatial recordings of real scenes with spatiotemporal
annotations of sound events,” in Proceedings of the
8th Detection and Classification of Acoustic Scenes and
Events 2022 Workshop (DCASE2022), Nancy, France,
November 2022, pp. 125–129. [Online]. Available: https:
//dcase.community/workshop2022/proceedings

[18] M. Cartwright, A. E. M. Mendez, J. Cramer, V. Lostanlen,
G. Dove, H.-H. Wu, J. Salamon, O. Nov, and
J. Bello, “SONYC urban sound tagging (SONYC-UST):
A multilabel dataset from an urban acoustic sensor
network,” in Proceedings of the Workshop on Detec-
tion and Classification of Acoustic Scenes and Events
(DCASE), October 2019, pp. 35–39. [Online]. Avail-
able: http://dcase.community/documents/workshop2019/
proceedings/DCASE2019Workshop Cartwright 4.pdf

[19] E. Tzinis, J. Casebeer, Z. Wang, and P. Smaragdis,
“Separate but together: Unsupervised federated learning for
speech enhancement from non-IID data,” in 2021 IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA). IEEE, oct 2021. [Online]. Available:
https://doi.org/10.1109%2Fwaspaa52581.2021.9632783

[20] D. Petermann, G. Wichern, Z.-Q. Wang, and J. L. Roux, “The
cocktail fork problem: Three-stem audio separation for real-
world soundtracks,” 2022.

[21] J. Abeßer, S. Gourishetti, A. Kátai, T. Clauß, P. Sharma, and
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