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ABSTRACT
The creation of sound effects, such as foley sounds, for radio or
film has traditionally relied on the expertise of skilled professionals.
However, synthesizing these sounds automatically without expert
intervention presents significant challenge. Particularly, when the
available data is limited, this challenge becomes even more com-
pounded. This often leads to a lack of diversity in the generated
data. In this paper, we propose effective GAN frameworks, O2C-
GAN and OC-SupConGAN for foley sound synthesis in this situa-
tion. The proposed frameworks use a new learning method, oneself-
conditioned contrastive learning (OCC learning), to solve problems
encountered in small dataset. The OCC learning is a method that
aims to expand the diversity of data while preserving the inherent
attributes of each class within the data. Experiments show that the
proposed framework outperforms baseline schemes, ranking 2nd in
DCASE2023-T7 Track B with a FAD score of 5.023 on the evalua-
tion set.

Index Terms— Foley sound synthesis, Generative Adversarial
Network, Contrastive Learning

1. INTRODUCTION

In recent years, there have been significant advancements in the
field of generative models, leading to a growing interest in gen-
erating images or sounds that fulfill specific user-defined condi-
tions across various domains. While the audio domain has seen
substantial advancements in voice synthesis for singing, text-to-
speech (TTS), and music generation, the focus on generating in
other acoustic domains, such as sound effects or background noises,
has been relatively limited [1, 2, 3]. Notably, foley sound synthe-
sis [4], crucial for enriching auditory experiences in narratives like
radio or movies, has been received relatively little attention. Fo-
ley sounds are meticulously crafted to synchronize with on-screen
events and actions, adding realism and depth to the overall sound
design. However, the creation of foley sounds traditionally relies on
skilled professionals manually performing and recording the neces-
sary sounds. This expert-driven approach restricts the scalability,
flexibility, and creative exploration in sound production. As a re-
sult, there is a clear need to explore automated approaches for gen-
erating user-desired foley sounds. However, tackling this challenge
is accompanied by various difficulties due to the complex nature of
foley sounds. Specifically, the problem is further exacerbated when
the available data for training models is scarce.

To promote research in the aforementioned field, task 7: Fo-
ley sound synthesis was introduced in the DCASE challenge. This
aimed to pioneer a new ground of audio synthesis and generate user-
desired sounds tailored to custom environments [5]. The following

Figure 1: Schematic figure of the application of oneself-conditioned
contrastive learning to different conditional contrastive losses. The
color of each shape represents a class. The color of line implies
the push-and-pull between the embeddings. The red line represents
pulling each embedding while the blue line represents pushing each
other. The thickness of the line expresses the strength of the pushing
and pulling force. The thicker the line, the stronger the pull or push.

task was divided into two sub-tasks: A and B. Participants were
challenged to generate 4-second audio clips with a dataset consist-
ing of about 800 data per class given from the challenge. Task B
allows only a dataset given from the challenge, while Task A allows
the use of external datasets. We participated in Task B. The require-
ment to train models with such a limited amount of data imposes a
critical flaw for the generative models. The scarcity of data is likely
to lead to problem with a lack of diversity in the generated data.

In this paper, we propose oneself-conditioned contrastive learn-
ing (OCC learning) that selectively applies label information in con-
ditional contrastive learning methods. The OCC learning uses label
information of the data itself but does not use label information be-
tween data. This extends the diversity between data while main-
taining the class-specific characteristics of the data. In small dataset
situations, OCC learning intentionally makes training of GAN dif-
ficult, increasing the stability of learning and solving the mode col-
lapse problem. This can be applied to models using conditional
contrastive learning method, among which we applied it to Con-
traGAN [6] and C-SupConGAN [7], thereby proposing O2C-GAN
and OC-SupConGAN respectively. The schematic difference be-
tween applying and not applying OCC learning to the contrastive
loss of each model is depicted in Figure 1.

The rest of this paper is structured as follows: In Section 2,
we provide a detailed description of our proposed methods, O2C-
GAN and OC-SupConGAN. Section 3 outlines the dataset used and
presents the experimental setup to compare with the baseline and
other variants of our approach. In Section4, we discuss the results
of our experiments, and finally, the last section concludes this paper.
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Figure 2: Illustration of a visual comparison of clusters of data embeddings generated by different trained GANs using t-SNE. The points of
each t-SNE are the embeddings of the data generated by the generator in the latent space of the discriminator.

2. METHODS

We build the 2-stage system to obtain high performance of FAD
score in the DCASE2023-T7 Track B. We denote the first stage as
the ‘Category-to-Mel spectrogram’ section and the second as the
‘Mel spectrogram-to-Sound’ section for straightforward explana-
tion. In the first step, we explain adversarial loss and introduce
two contrastive loss functions which proposed oneself-conditioned
contrastive learning (OCC learning) was fed into. We apply the
following OCC learning to ContraGAN and C-SupConGAN and
demonstrate effectiveness.

2.1. Category-to-Mel spectrogram

Adversarial Loss GAN [8] is composed of a generator and a dis-
criminator. Generator G intends to deceive the discriminator D with
a synthetic Mel spectrogram generated from the given label infor-
mation. On the other hand, the discriminator D must establish the
validity of the generated Mel spectrogram and the real Mel spectro-
gram using label information. G takes noise zi with label informa-
tion of class i, ci, and D takes real Mel spectrogram xi or fake Mel
spectrogram G(zi, ci) based on the same label information ci. We
use the hinge loss function as the adversarial loss function, and each
objective function for D and G are shown in the equation below.

lD = −min (0,−1 +D (xi, ci))−min (0,−1−D (G (zi, ci) , ci))
(1)

lG = −D (G (zi, ci) , ci)

Oneself-Conditioned Contrastive Loss (O2C loss) We first use
ContraGAN, which introduced conditional contrastive loss (2C
loss) to GAN. 2C loss is a supervised method that minimizes data-
to-data distances belonging to the same class and data-to-class dis-
tance and maximizes data-to-data distances belonging to the dif-
ferent classes using data embeddings and class embeddings. To
extract embeddings for contrastive learning, we divided the dis-
criminator D into two separate networks: D1 and D2. Firstly,
D(·) = D2(D1(·)) is used for calculating adversarial loss. To
extract data embeddings di, features of real or fake data extracted
from D1(·) are additionally feedforward to the projection head h(·).
Thus, we can term di = h(D1(xi, ci)) for simplicity. The class
embedding is extracted by the embedding function e(·) and can be
denoted as e(ci). Further, these features are mapped to the unit
hypersphere for cosine similarity computation.

Although the 2C loss function itself produces decent perfor-
mance, the small number of data per class leads to an unexpected
situation. We discovered that the adversarial loss of the discrimi-
nator D falls too quickly when we implement the 2C loss function
as it is in the current task. This occurrence leads to poor GAN
training, further to mode collapse problem [9] that produces similar
outputs within the class. To resolve this tragic event, we introduce
oneself-conditioned contrastive learning (OCC learning) to the orig-
inal 2C loss function, and term this oneself-conditioned contrastive
loss (O2C loss). As aforementioned above, 2C loss uses label infor-
mation for both data-to-data and data-to-class relations. O2C loss
ignores label information for data-to-data relations and uses label
information only for data-to-class relations. The training guidelines
for 2C loss and the O2C loss are outlined in (a) and (b) of Figure
1. As shown in the figure 1, the O2C loss maximizes distances
between all data embeddings, regardless of whether the data belong
to the same class or different classes, and only minimizes data-to-
class distance. This optional use of label information distributes
data within a class while maintaining the class’s distinctiveness.
The effect of O2C loss is shown in Figure 2. This solves the mode
collapse problem by securing the diversity of data while generating
well-classified data according to class and shows tremendous per-
formance improvement. The following data-to-data distance d2di,j
and data-to-class distance d2ci,i can be denoted as the equation 3.

d2di,j = exp (di · dj/τd) , d2ci,i = exp (di · e(ci)/τc) (2)

With the aforementioned notation, the O2C loss function is defined
as follows:

lO2C (di, ci) = − log

(
d2ci,i

d2ci,i +
∑N

k=1 1i̸=k · d2di,j

)
(3)

The · symbol denotes the inner (dot) product, and N is batch size.
The hyperparameter τ is applied to control the pushing and pulling
forces for distance between embeddings; the larger τ , the weaker
the force, and the smaller τ , the stronger the force. C-SupConGAN
differentiates the temperature hyperparameter for data-to-data dis-
tance τd and data-to-class distance τc to boost performance. We
set τd = 0.1, τc = 0.1 by default, but we also conducted the ex-
periment with different values of the two variables, which leads to
better results.
Oneself-Conditioned Supervised Contrastive loss (OC-SupCon
loss) C-SupConGAN, an advanced version of ContraGAN, uses
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pre-trained data features to support the feature learning of the dis-
criminator. The conditional supervised contrastive loss (C-SupCon
loss) appends data-to-source relation to prior 2C loss. For data-to-
source relation, C-SupCon loss uses reference data embedding ex-
tracted from the pre-trained encoder f(·). This aids GAN’s feature
learning, thereby reduces the instability of the training process and
enable long-term training, and ultimately improved performance.
Nonetheless, mode collapse still occurs when C-SupConGAN is ap-
plied to the current task as it is. Therefore, we also apply the OCC
learning to C-SupCon loss and call it OC-SupCon loss.

d2si,i = exp (di · f(xi)/τc) (4)

In the same way, the OC-SupCon loss can be described as follows:

lOC–SupCon (di, ci) = − log

(
d2si,i + d2ci,i

d2si,i + d2ci,i +
∑N

k=1 1i ̸=k · d2di,k

)
(5)

The conceptual difference between the C-SupCon loss and the OC-
SupCon loss can be schematically confirmed in Figure 1.

We used ResNet18 [10] as the encoder network f(·), and it was
pretrained with Supervised Contrastive Learning (SupCon) [11]
loss function. For audio augmentation, we used fade in/out and
time masking during the pretraining process. After the pretraining
process is completed, we proceed with classification finetuning and
classification evaluation. Since additional dataset such as the evalu-
ation dataset was not open to the public, we could only evaluate the
performance of classification on the training set. The classification
accuracy achieved 100%, which may appear as overfitting, but we
can infer that the pretrained encoder network f(·) is capable of ex-
tracting high-quality audio embeddings from the training set. Thus,
we use the data embedding f(xi) extracted from the pretrained en-
coder f(·) as a reference to the data embedding di extracted from
the discriminator.

Our total system is optimized through two types of loss func-
tion, which is the combination of adversarial loss and O2C loss
function and the combination of adversarial loss and OC-SupCon
loss function. O2C loss or OC-SupCon loss is expressed as lC . In
this way, total loss function L can be described:

LD =
1

N

N∑
k=1

lD +
1

N

N∑
k=1

lC , LG =
1

N

N∑
k=1

lG+
1

N

N∑
k=1

lC (6)

L = LD + LG (7)

We term GAN using O2C loss as O2C-GAN, and OC-SupCon loss
as OC-SupConGAN.

2.2. Mel spectrogram-to-sound

After the training on the first stage, the trained generator network G
have the ability to generate Mel-spctrograms from class categories.
During the second stage, a pre-trained vocoder network transforms
the generated Mel-spectrogram into a time-domain digital audio
signal. Instead of proposing a new vocoder network, we leverage
the pre-trained vocoder network, HiFi-GAN [12], provided by the
DCASE challenge.

3. EXPERIMENT

We design our experiments for three purposes. First, we demon-
strate the effectiveness of oneself-conditioned contrastive learning
(OCC learning). The performances of models with or without
OCC learning are compared. Second, we examine the effect of the
temperature hyperparameter τ on the frameworks by adjusting τc.
Third, we verify the two proposed models exceed the performance
of the baseline system.

3.1. Experiment metrics

We use Frechet Audio Distance (FAD) [13]. FAD is a standard met-
ric for music enhancement and is very useful in that it is a reference-
free evaluation metric. FAD can be employed even in the absence
of a ground truth reference audio because it is calculated from col-
lections of hidden representations of created and real samples. The
FAD score can be computed by multivariate Gaussians between the
generated data set and the actual audio data set, which can be re-
ferred to as the reference embeddings.

3.2. Implementation Details

We use the log mel-band energies of input audio as an audio fea-
ture. We set the frame length to 1024, and hop size to 256. All the
models we train are devised to generate 80× 344 mel spectrogram.
Initially, we employed the learning rates used in C-SupConGAN to
train our proposed models. The generator was trained with a learn-
ing rate of 0.0001, while the discriminator was trained a learning
rate of 0.0004. However, the small amount of dataset led to the cir-
cumstance of discriminator D learning too quickly. Thus, we set
both learning rates equally to 0.0001. For all models, we use Adam
optimizer [14] with β1 = 0.5 and β2 = 0.999 for training. For
contrastive learning, we build a 2-layer projection layer h(·) which
embeds the output of the portion of discriminator network D1 to
128-dimension. During training, we freeze the weight of pretrained
encoder network E(·).

3.3. Dataset

The DCASE2023-T7 Track B development set contains 4,850 la-
beled sound fragments, classified into 7 categories: dog bark,
footstep, gunshot, keyboard, moving motor vehicle, rain, and
sneeze/cough. Each sound was fitted to a length of 4 seconds, and
zero-padded or segmented if necessary. All audio was transferred to
mono 16-bit 22,050 Hz sampling rate [5]. As we are participating
in subtask B, we do not use any external sources.

4. RESULTS

w/o OCC learning w. OCC learning
ContraGAN C-SupConGAN O2C-GAN OC-SupConGAN

FAD 12.667 12.552 5.480 5.230

Table 1: The comparison of FAD score on two baselines with and
without OCC learning.
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Method DT CT DogBark Footstep GunShot Keyboard Vehicle Rain Sneeze Average
O2C-GAN 0.1 0.1 2.784 4.370 4.667 3.555 17.511 3.899 1.577 5.480
O2C-GAN 0.1 1.0 3.348 3.990 3.495 4.074 14.861 3.529 1.865 5.023

OC-SupConGAN 0.1 0.1 2.616 3.739 6.322 4.089 14.172 4.304 1.371 5.230
OC-SupConGAN 0.1 1.0 4.854 3.103 4.790 3.665 13.604 3.727 1.435 5.026

Table 2: The comparison of FAD score on our proposed methods submitted to the DCASE2023-T7 Track B.

4.1. Effectiveness of OCC learning

We demonstrate the effectiveness of oneself-conditioned contrastive
learning (OCC learning) by comparing the cases with and without
OCC learning for two different GAN. We use t-SNE [15] to visu-
ally compare clusters of embeddings of data generated by different
trained GANs. In Figure 2, the points of each t-SNE are the embed-
dings of the data generated by the generator in the latent space of
the discriminator. Generated data are compared quantitatively using
FAD and it is shown in Table 1.

The GANs which do not use OCC learning train the model in a
way that the distance between the data embedding and the data’s
own condition embeddings as well as the distance between data
embeddings belonging to the same class becomes close. In Contra-
GAN, class embedding is used as condition, and in C-SupConGAN,
class embedding and pretrained data embedding are used as condi-
tion. When the dataset with a large amount of data per class is used,
this helps the data to cluster for class distinction. When a small
dataset with fewer data per class is used as in the current task, this
causes the data belonging to the class to clump too much, result-
ing in a decrease in the diversity of data. As a result, the loss of
discriminator D drops rapidly, resulting in poor training of GAN.
The GANs using OCC learning, O2C-GAN, and OC-SupConGAN,
optimize the model so that the distance between the data embed-
ding and the data’s own condition embeddings becomes close as
in the previous loss function, but the distance between data em-
beddings belonging to the same class becomes far. This expands
data clustering, amplifying the diversity among data belonging to
the same class while maintaining class distinctiveness by retaining
class attributes in data. As a result, by making learning task difficult,
GAN training becomes stable, and various and higher-quality data
are generated. Moreover, OC-SupConGAN leverages additionally
pre-trained data embeddings as the condition to enhance the sub-
jectivity of the data. Consequently, it leads to a broader dispersion
of data and improves performance compared to O2C-GAN. These
effects are visually illustrated in Figure 2 and shows a significant
performance improvement in Table 1.

4.2. Performance Comparison

Unlike ContraGAN, C-SupConGAN uses the different temperature
hyperparameters τ , which controls the strength of pulling or push-
ing between embeddings, for data-to-data distance τd and data-
to-condition distance τc. The higher the τ value, the weaker the
strength, the lower the τ value, the stronger. The temperature hy-
perparameter τd, which controls the strength of the data-to-data dis-
tance, is called DT, and the temperature hyperparameter τc, which
controls the strength of the data-to-condition distance, is called CT.
In C-SupConGAN, experiments using various values of τd and τc
were conducted, and the best performance was achieved at τd = 0.1
and τc = 1.0. We also performed experiments not only with
τd = 0.1 and τc = 0.1, which were used by default, but also

with τd = 0.1 and τc = 0.1. In OCC learning, this leads the
distance between all data embeddings to be strongly far, and the
distance between the data embeddings and the data’s own condition
embeddings to be weakly close. This encourages data to maintain
the unique characteristics of the class, but weaken the binding force
of the class, and secure more diversity by widening the distance
from other data. As a result, as shown in Table 2, the generation
performance is further improved.

Class Baseline Ours
O2C-GAN OC-SupConGAN

DogBark 13.412 3.348 4.854
Footstep 8.108 3.990 3.103
GunShot 7.952 3.495 4.790
Keyboard 5.230 4.074 3.665
Vehicle 16.107 14.861 13.604

Rain 13.338 3.529 3.727
Sneeze 3.771 1.865 1.435
Average 9.702 5.023 5.026

Table 3: The FAD score on each class of baseline scheme, O2C-
GAN, and OC-SupConGAN.

Table 3 refers to the performance comparison between base-
line method with our proposed methods: O2C-GAN and OC-
SupConGAN. Our two techniques outperform baseline methods in
every way. In particular, in ‘DogBark’ and ‘Rain’ classses, our
baseline frameworks performed 4 to 5 times better than the exist-
ing baseline. We speculate that this remarkable performance is due
to the proposed frameworks’ ability to enhance variance of data fea-
tures within the class while keeping distinct characteristic of class
using our proposed OCC learning. In Table 3, we can see that im-
provement of FAD performance of class ‘Moving Motor Vehicle’
is rather low. We infer this outcome is based on insufficient vari-
ance of audio data within the class. This trait induce generation of
similar data in the class regardless of the methods. To sum up, our
proposed frameworks achieve the average FAD score of 5.023 and
5.026, which is the half of the baseline.

5. CONCLUSION

In this paper, we propose new GAN frameworks, O2C-GAN and
OC-SupConGAN, for foley sound synthesis introduced by DCASE
challenge. The proposed frameworks use a new learning method,
oneself-conditioned contrastive learning (OCC learning), to solve
problems encountered in small dataset. The OCC learning is a
method that aims to expand the diversity of data while maintaining
the class properties in the data. Our proposed frameworks achieved
FAD scores of 5.023 and 5.026, outperformed the baseline frame-
work, and ranked 2nd in the DCASE2023-T7 Track B.
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