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ABSTRACT

We present the task description of the Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) 2023 Challenge Task
2: “First-shot unsupervised anomalous sound detection (ASD) for
machine condition monitoring”. The main goal is to enable rapid
deployment of ASD systems for new kinds of machines without
the need for hyperparameter tuning. In the past ASD tasks, devel-
oped methods tuned hyperparameters for each machine type, as the
development and evaluation datasets had the same machine types.
However, collecting normal and anomalous data as the development
dataset can be infeasible in practice. In 2023 Task 2, we focus on
solving the first-shot problem, which is the challenge of training a
model on a completely novel machine type. Specifically, (i) each
machine type has only one section (a subset of machine type) and
(ii) machine types in the development and evaluation datasets are
completely different. Analysis of 86 submissions from 23 teams
revealed that the keys to outperform baselines were: 1) sampling
techniques for dealing with class imbalances across different do-
mains and attributes, 2) generation of synthetic samples for robust
detection, and 3) use of multiple large pre-trained models to extract
meaningful embeddings for the anomaly detector.

Index Terms— anomaly detection, acoustic condition monitor-
ing, domain shift, first-shot problem, DCASE Challenge

1. INTRODUCTION

Anomalous sound detection (ASD) [1–7] is the task of identify-
ing whether the sound emitted from a target machine is normal or
anomalous. Automatic detection of mechanical failure is essential
for the artificial intelligence (AI)–based factory automation. Use of
machine sounds for promptly detecting machine anomalies is useful
for monitoring a machine’s condition.

One fundamental challenge regarding the application of ASD
systems is that anomalous samples for training can be insufficient
both in number and type. In 2020, we organized the first ASD
task in Detection and Classification of Acoustic Scenes and Event
(DCASE) Challenge 2020 Task 2 [8]; “unsupervised ASD” that was
intended to detect unknown anomalous sounds using only normal
sound samples as the training data [1–7].

For the wide-spread application of ASD systems, advanced
tasks such as handling of domain shifts should be tackled [9]. Do-
main shifts are differences between the source and target domain

data caused by a machine’s operational conditions or environmen-
tal noise. Since methods developed in the task in 2020 fail to dis-
tinguish normal sounds subject to domain shifts and anomalous
sounds, the detection performance of these methods can degrade
under domain-shifted conditions. To reflect domain-shifted condi-
tions, we organized DCASE 2021 Task 2 [9], “unsupervised ASD
under domain shifted conditions” and DCASE Challenge 2022 Task
2 [10], “unsupervised ASD applying domain generalization tech-
niques”. The task in 2021 focused on handling domain shifts using
domain adaptation techniques, and the task in 2022 focused on han-
dling domain shifts using domain generalization techniques.

Previous tasks from 2020 to 2022 had premises such as multi-
ple machine IDs or section IDs for each machine type and the same
set of machine types for the development and evaluation datasets.
As a result, developed methods made use of multiple IDs within a
machine type or tuned hyperparameters using normal and anoma-
lous data from the development dataset. However, these premises
could pose a barrier when attempting to apply methods developed
in the past tasks to real-world scenarios, as preparing multiple IDs
for each machine type or collecting normal and anomalous data for
the development dataset can be time-consuming or even infeasible.

To solve the problem described above, we designed DCASE
Challenge 2023 Task 2, “First-Shot Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring”. This task
is aimed at developing methods for solving the first-shot problem
and rapidly deploying ASD systems, while the task also focuses on
developing domain generalization techniques for handling domain
shifts. Specifically, only one section is provided for each machine
type, and the sets of machine types are completely different between
the development and evaluation datasets.

We received 86 submissions from 23 teams. By analyzing these
submissions, we found techniques several top-rankers used in com-
mon: 1) sampling techniques for dealing with class imbalances , 2)
generation of synthetic samples for robust detection, and 3) use of
multiple large pre-trained models to extract meaningful embeddings
for the anomaly detector.

2. FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND
DETECTION UNDER DOMAIN SHIFTED CONDITIONS

Let the L-dimensional time-domain observation xi ∈ RL be an
audio clip that includes a sound emitted from a machine with a spe-
cific ID i. The ID serves as a unique identifier that indicates the
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machine’s class on the basis of its model number or other identi-
fying specifications. The goal of the ASD task is to classify the
machine as normal or anomalous by computing the anomaly score
Aθ(xi) by using an anomaly score calculator A with parameters θ.
A is trained to assign higher scores to anomalous samples and lower
scores to normal samples. The input to A can be the audio clip xi

or xi with additional information such as the ID. The machine is
classified as anomalous if Aθ(xi) exceeds a pre-defined threshold
ϕ

Decision =

{
Anomaly (Aθ(xi) > ϕ)
Normal (otherwise). (1)

The primary difficulty in this task is to train A using only normal
sounds (unsupervised ASD). The DCASE 2020 Challenge Task 2
was designed to address this issue.

In real-world scenarios, the domain-shift problem also needs
to be solved. Domain shifts are variations in conditions between
training and testing phases that impact the distribution of normal
sound data. These shifts can arise from differences in operating
speed, machine load, viscosity, heating temperature, environmental
noise, signal-to-noise ratio, and other factors. Two domains, source
domain and target domain, are defined: the former refers to the
original condition with sufficient training data and the latter refers
to another condition with only a few samples. The 2021 Task 2
aimed to develop domain adaptation techniques, assuming the do-
main information (source/target) of each sample is known. How-
ever, in practice, obtaining domain information is challenging due
to the difficulty in detecting domain shifts.

To address the challenges of applying domain adaptation tech-
niques in real-world scenarios, the 2022 Task 2 focused on develop-
ing domain generalization techniques. Domain generalization tech-
niques for ASD aim at detecting anomalies from different domains
with a single threshold. These techniques, unlike domain adaptation
techniques, do not require detection of domain shifts or adaptation
of the model during the testing phase.

Although several novel ASD methods have been proposed in
past tasks, we have recognized that their application in real-world
scenarios remains challenging. This is because certain assumptions
in previous tasks may not hold in practice. One such assumption is
that participants were allowed to tune the hyperparameters of the
model by using the test data of the development dataset. How-
ever, this is often infeasible in real-world applications where the
machine type can be completely new or the amount of test data can
be insufficient for tuning hyperparameters. Another assumption is
the existence of multiple IDs for a machine type. This assumption
has facilitated the development of outlier exposure approaches [11],
where sound clips from different machines are used as anomalies.
However, in many practical cases, the number of machines for a
machine type can be limited. This limitation arises because the cus-
tomers may not possess multiple machines of the same machine
type, or they may initially plan to install the system for only a few
machines. As a result, the developed methods in the previous tasks
may not be immediately applicable in practice.

To overcome these new challenges, the organizers designed the
2023 Task 2 with two main features: (i) completely different set
of machine types between the development and evaluation dataset
and (ii) Only one section for each machine type. Because the ma-
chine types are completely different between the development and
evaluation dataset, tuning hyperparameters using the test data from
the development dataset is no longer feasible. Furthermore, since
only one section is available for each machine type, multiple IDs
within a machine type cannot be used. As a result, participants are

expected to develop ASD methods without tuning hyperparameters
using the test data and without relying on multiple IDs within a ma-
chine type. We name these challenges the “first-shot problem”, as
these challenges replicate practical cases where the ASD system has
to be deployed for a novel machine type or with a limited number
of example measurements.

3. TASK SETUP

3.1. Dataset

The data for this task comprises three datasets: development
dataset, additional training dataset, and evaluation dataset.
Each dataset includes seven machine types, with one section per
machine type. Machine type means the type of machine such as
fan, gearbox, bearing, etc. Section is a subset or whole data within
each machine type.

Each recording is a single-channel audio with a duration of 6
to 18 s and a sampling rate of 16 kHz. We mixed machine sounds
recorded at laboratories and environmental noise samples recorded
at factories and in the suburbs to create each sample in the dataset.
For the details of the recording procedure, please refer to the papers
on ToyADMOS2 [12] and MIMII DG [10].

The development dataset consists of seven machine types (fan,
gearbox, bearing, slide rail, ToyCar, ToyTrain), and each machine
type has one section that contains a complete set of the training
and test data. Each section provides (i) 990 normal clips from a
source domain for training, (ii) 10 normal clips from a target do-
main for training, and (iii) 100 normal clips and 100 anomalous
clips from both domains for the test. We provided domain informa-
tion (source/target) in the test data for the convenience of partici-
pants. Attributes that represent operational or environmental condi-
tions are also provided in the file names and attribute csvs.

The additional training dataset provides novel seven machine
types (Vacuum, ToyTank, ToyNscale, ToyDrone, bandsaw, grinder,
shaker). Each section consists of (i) 990 normal clips in a source
domain for training and (ii) 10 normal clips in a target domain for
training. Attributes are provided in this dataset.

The evaluation dataset provides the same machine types as the
additional training dataset. Each section consists of 200 test clips,
none of which have a condition label (i.e., normal or anomaly) or
the domain information. Attributes are not provided.

The data for this task differs from the 2022 version in two main
aspects: reduced number of sections per machine type (from six in
2022 to one in this task) and a completely different set of machine
types between the development and evaluation datasets. As a result,
participants are required to train a model for a novel machine type
using only one section for each machine type and without hyperpa-
rameter tuning using the development dataset.

3.2. Evaluation metrics

For evaluation, the area under the receiver operating characteristic
curve (AUC) was employed as a metric to assess the overall detec-
tion performance, while the partial AUC (pAUC) was utilized to
measure performance in a low false-positive rate (FPR) range [0, p].
In this task, we used p = 0.1. In domain generalization task, the
AUC for each domain and pAUC for each section are calculated as

AUCm,n,d =
1

N−
d N

+
n

N−
d∑

i=1

N+
n∑

j=1

H(Aθ(x
+
j )−Aθ(x

−
i )), (2)
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pAUCm,n =
1
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n ⌋N+
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n∑

j=1

H(Aθ(x
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j )−Aθ(x

−
i )),

(3)
where m represents the index of a machine type, n represents the
index of a section, d = {source, target} represents a domain, ⌊·⌋
is the flooring function, and H(x) returns 1 when x > 0 and 0

otherwise. Here, {x−i }
N−

d
i=1 are normal test clips in domain d in

section n and {x+j }
N+

n
j=1 are anomalous test clips in section n in

machine type m. The N−
d is the number of normal test clips in

domain d, N−
n is the number of normal test clips in section n, and

N+
n is the number of anomalous test clips in section n.

The official score Ω is given by the harmonic mean of the AUC
and pAUC scores over all machine types and sections:

Ω = h
{
AUCm,n,d, pAUCm,n |

m ∈ M, n ∈ S(m), d ∈ {source, target}} , (4)

where h {·} represents the harmonic mean (over all machine types,
sections, and domains), M represents the set of machine types, and
S(m) represents the set of sections for machine type m.

3.3. Baseline systems and results

The organizers provided an Autoencoder (AE)-based baseline sys-
tem with two different ways of calculating the anomaly scores. We
present the baseline system and its detection performance. For de-
tails, please refer to [13].

3.3.1. Autoencoder-based baseline

First, the log-mel-spectrogram of the input X = {Xk}Kk=1 is cal-
culated, where Xk ∈ RF , and F and K are the number of mel-
filters and time-frames, respectively. Then, the acoustic feature
at k is obtained by concatenating consecutive frames of the log-
mel-spectrogram as ψk = (Xk, · · · , Xk+P−1) ∈ RD , where
D = P ×F , and P is the number of frames of the context window.

3.3.2. Simple Autoencoder mode

In this mode, the anomaly score is calculated as

Aθ(X) =
1

DK

K∑
k=1

∥ψk − rθ(ψk)∥22, (5)

where rθ is the vector reconstructed by the AE, and ∥·∥2 is ℓ2 norm.

3.3.3. Selective Mahalanobis mode

In this mode, the Mahalanobis distance between the observed sound
and reconstructed sound is used to calculate the anomaly score. The
anomaly score is given as

Aθ(X) =
1

DK

K∑
k=1

min{Ds(ψk, rθ(ψk)), Dt(ψk, rθ(ψk))},

(6)
Ds(·) =Mahalanobis(ψk, rθ(ψk),Σ

−1
s ), (7)

Dt(·) =Mahalanobis(ψk, rθ(ψk),Σ
−1
t ), (8)

where Σ−1
s and Σ−1

t are the covariance matrices calculated with the
source domain data and target domain data of each section, respec-
tively.

Table 1: Results with Simple Autoencoder mode
Machine type Section AUC [%] pAUC [%]

Source Target
ToyCar 00 70.10 ± 0.46 46.89 ± 2.67 52.47 ± 1.28

ToyTrain 00 57.93 ± 2.12 57.02 ± 0.79 48.57 ± 0.32
bearing 00 65.92 ± 0.73 55.75 ± 0.76 50.42 ± 0.79

fan 00 80.19 ± 2.43 36.18 ± 3.71 59.04 ± 1.24
gearbox 00 60.31 ± 0.56 60.69 ± 0.63 53.22 ± 0.60
slider 00 70.31 ± 0.20 48.77 ± 0.12 56.37 ± 0.31
valve 00 55.35 ± 1.18 50.69 ± 1.12 51.18 ± 0.35

Table 2: Results with Selective Mahalanobis mode
Machine type Section AUC [%] pAUC [%]

Source Target
ToyCar 00 74.53 ± 1.55 43.42 ± 2.53 49.18 ± 0.49

ToyTrain 00 55.98 ± 2.41 42.45 ± 1.06 48.13 ± 0.17
bearing 00 65.16 ± 0.76 55.28 ± 0.57 51.37 ± 0.81

fan 00 87.10 ± 2.20 45.98 ± 4.43 59.33 ± 0.90
gearbox 00 71.88 ± 0.66 70.78 ± 0.62 54.34 ± 0.30
slider 00 84.02 ± 1.10 73.29 ± 0.60 54.72 ± 0.25
valve 00 56.31 ± 1.38 51.40 ± 0.40 51.08 ± 0.13

3.3.4. Results

The AUC and pAUC for each machine type are shown in Tables 1
and 2. The results are average of five independent runs.

4. CHALLENGE RESULTS

We received 86 submissions from 23 teams. Eleven teams outper-
formed the simple Autoencoder baseline, and eight teams outper-
formed the selective Mahalanobis baseline. The number of teams
was significantly fewer than for the task in 2022, where 22 out of
31 teams outperformed the baselines. This observation suggests that
the new features in this year’s task, such as having only one sec-
tion for each machine type and novel machine types in the evalua-
tion dataset, have increased the task’s difficulty level. Despite these
challenges, several top-ranked teams significantly outperformed the
baselines. Figure 1 illustrates the harmonic means of the AUCs for
the top 10 teams. Notably, all eight teams that outperformed the
baselines in the official scores also surpassed the baselines in the
harmonic mean of the AUCs in the target domain. This indicates
that higher AUCs in the target domain were crucial for higher ranks.

Since the task this year focused on developing ASD methods
that work for novel machine types, we compared the AUCs be-
tween the development and evaluation datasets. Figure 2 shows the
AUCs from the top 20 teams for the source domain, while Figure
3 displays the AUCs for the target domain. From Figure 2, it can
be observed that approximately half of the teams achieved higher
source-domain AUCs in the evaluation dataset compared to the de-
velopment dataset. This indicates that, with a sufficient amount of
training data, detection for a novel machine type can be possible
without significant degradation in performance. However, Figure
3 reveals that the target-domain AUCs were lower in the evalua-
tion dataset for most teams. This underscores the difficulty of deal-
ing with domain shifts for novel machine types. The lower AUCs
observed in the evaluation dataset for the target domain can be at-
tributed to the fact that the variations induced by domain shifts can
differ significantly for each machine type. In this case, when do-
main generalization techniques are developed for maximizing the
AUCs in the development dataset, using the same techniques for the
evaluation dataset will degrade the performance. Addressing these
variations becomes more challenging when only a limited number
of samples are available, further complicating the problem.

We summarize approaches used by top-ranked teams in the
following.
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Figure 1: Evaluation results of top 10 teams in the ranking. Average source-domain AUC (Top) and target-domain AUC (bottom) for each
machine type. Label “A” and “M” on the x-axis denote simple Autoencoder mode and selective Mahalanobis mode, respectively.
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Figure 2: Comparison of average source-domain AUC for the de-
velopment dataset and evaluation dataset across teams.
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Figure 3: Comparison of average target-domain AUC for the devel-
opment dataset and evaluation dataset across teams.

a. Oversampling for imbalance compensation
Because the number of samples in the datasets is imbalanced

across domains and attributes, compensating for these class imbal-
ances can improve the detection performance. The 6th team [14]
duplicated samples from classes with fewer samples, while the
1st and 2nd teams [15, 16] oversampled target-domain data using
SMOTE [17]. These approaches are only seen among top-rankers,
and can be one of the key factors for outperforming the baselines.

b. Synthetic data generation for robust detection
Synthetic data can be utilized to accurately model the dis-

tribution of normal data and enhance the robustness of the
detection model. The 1st, 4th, 5th, 10th, and 19th teams employed
Mixup [18] including its variants [15, 19–22], and obtained higher
source-domain AUCs. Other papers used other data augmentation

techniques such as speed perturbation, noise injection, and pitch
shift [14, 16, 23]. The treatment of generated synthetic data varies
among teams. While the 4th team [19] treated them as anomalous
samples that belong to a new class, the 1st and 5th teams [15, 20]
treated them as normal samples. Mixup can be one of the key fac-
tors for outperforming the baselines, as this technique was used by
several top-rankers and teams that achieved higher source-domain
AUCs.

c. Attribute ID classification using pre-trained models
Although only one section was provided for each machine type,

attributes were included in the development and additional training
dataset. As a result, many participants trained attribute classifiers
or machine type classifiers to obtain embeddings that could be used
for outlier detectors [14–16, 19, 24, 25]. For the outlier detector, k-
nearest neighbors algorithm (kNN) was used by most of the teams.

Pre-trained models are used [16, 24, 26] for attribute classi-
fiers or machine type classifiers. Although pre-trained models
have been used by participants in previous tasks, the 2nd and 3rd
teams [16,24] are the first teams that used multiple large pre-trained
models to achieve higher official scores. These pre-trained models
were fine-tuned with classification objectives, i.e., attribute or
machine type classification.

d. Other novel approaches
The 3rd team [24] grouped machine types into several cate-

gories so that generalization ability on novel machine types can be
obtained. The 7th team [23] used AudioLDM [27], a text-to-audio
model, to generate pseudo anomalous sounds from the text input.

5. CONCLUSION

This paper presented an overview of the task and analysis of the
solutions submitted to DCASE 2023 Challenge Task 2. The task
was aimed to develop an ASD system that works for a novel ma-
chine type with a single section for each machine type. Analysis
of the submission revealed that, for novel machine types, detection
in the target domain can be of significant difficulty compared to the
source domain. The analysis also revealed useful methods for out-
performing the baselines: 1) sampling techniques for dealing with
class imbalances, 2) generation of synthetic samples by mix-up and
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its variants, and 3) use of multiple large pre-trained models for at-
tribute ID classification.

6. REFERENCES

[1] Y. Koizumi, S. Saito, H. Uematsu, and N. Harada, “Optimiz-
ing acoustic feature extractor for anomalous sound detection
based on Neyman-Pearson lemma,” in EUSIPCO, 2017, pp.
698–702.

[2] Y. Kawaguchi and T. Endo, “How can we detect anomalies
from subsampled audio signals?” in MLSP, 2017.

[3] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada,
“Unsupervised detection of anomalous sound based on deep
learning and the Neyman-Pearson lemma,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 27,
no. 1, pp. 212–224, Jan. 2019.

[4] Y. Kawaguchi, R. Tanabe, T. Endo, K. Ichige, and K. Hamada,
“Anomaly detection based on an ensemble of dereverberation
and anomalous sound extraction,” in ICASSP, 2019, pp. 865–
869.

[5] Y. Koizumi, S. Saito, M. Yamaguchi, S. Murata, and
N. Harada, “Batch uniformization for minimizing maximum
anomaly score of DNN-based anomaly detection in sounds,”
in WASPAA, 2019, pp. 6–10.

[6] K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. Endo, and
Y. Kawaguchi, “Anomalous sound detection based on interpo-
lation deep neural network,” in ICASSP, 2020, pp. 271–275.

[7] H. Purohit, R. Tanabe, T. Endo, K. Suefusa, Y. Nikaido,
and Y. Kawaguchi, “Deep autoencoding GMM-based unsu-
pervised anomaly detection in acoustic signals and its hyper-
parameter optimization,” in DCASE Workshop, 2020, pp. 175–
179.

[8] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura,
Y. Nikaido, R. Tanabe, H. Purohit, K. Suefusa, T. Endo,
M. Yasuda, and N. Harada, “Description and discussion
on DCASE2020 challenge task2: Unsupervised anoma-
lous sound detection for machine condition monitoring,” in
DCASE Workshop, 2020, pp. 81–85.

[9] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, D. Niizumi,
K. Dohi, R. Tanabe, H. Purohit, and T. Endo, “Description and
discussion on DCASE 2021 challenge task 2: Unsupervised
anomalous detection for machine condition monitoring under
domain shifted conditions,” in DCASE Workshop, 2021, pp.
186–190.

[10] K. Dohi, T. Nishida, H. Purohit, R. Tanabe, T. Endo, M. Ya-
mamoto, Y. Nikaido, and Y. Kawaguchi, “MIMII DG: Sound
dataset for malfunctioning industrial machine investigation
and inspection for domain generalization task,” in DCASE
Workshop, 2022.

[11] R. Giri, S. V. Tenneti, F. Cheng, K. Helwani, U. Isik, and
A. Krishnaswamy, “Self-supervised classification for detect-
ing anomalous sounds,” in DCASE Workshop, 2020, pp. 46–
50.

[12] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, M. Yasuda,
and S. Saito, “ToyADMOS2: Another dataset of miniature-
machine operating sounds for anomalous sound detection un-
der domain shift conditions,” in DCASE Workshop, 2021, pp.
1–5.

[13] N. Harada, N. Daisuke, T. Daiki, O. Yasunori, and
Y. Masahiro, “First-shot anomaly detection for machine con-
dition monitoring: a domain generalization baseline,” arXiv
preprint arXiv:2303.00455, 2023.

[14] Y. Zhou and Y. Long, “Attribute classifier with imbalance
compensation for anomalous sound detection,” DCASE2023
Challenge, Tech. Rep., June 2023.

[15] J. Jie, “Anomalous sound detection based on self-supervised
learning,” DCASE2023 Challenge, Tech. Rep., June 2023.

[16] Z. Lv, B. Han, Z. Chen, Y. Qian, J. Ding, and J. Liu, “Unsuper-
vised anomalous detection based on unsupervised pretrained
models,” DCASE2023 Challenge, Tech. Rep., June 2023.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: Synthetic minority over-sampling tech-
nique,” vol. 16, no. 1, 2002.

[18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” in Interna-
tional Conference on Learning Representations, 2018. [On-
line]. Available: https://openreview.net/forum?id=r1Ddp1-Rb

[19] K. Wilkinghoff, “Fraunhofer fkie submission for task 2: First-
shot unsupervised anomalous sound detection for machine
condition monitoring,” DCASE2023 Challenge, Tech. Rep.,
June 2023.

[20] J. Yafei, B. Jisheng, and H. Siwei, “Unsupervised abnor-
mal sound detection based on machine condition mixup,”
DCASE2023 Challenge, Tech. Rep., June 2023.

[21] W. JiaJun, “Self-supervised representation learning for first-
shot unsupervised anomalous sound detection,” DCASE2023
Challenge, Tech. Rep., June 2023.

[22] T. Fujimura, I. Kuroyanagi, T. Hayashi, and T. Toda, “Anoma-
lous sound detection by end-to-end training of outlier expo-
sure and normalizing flow with domain generalization tech-
niques,” DCASE2023 Challenge, Tech. Rep., June 2023.

[23] J. Tian, H. Zhang, Q. Zhu, F. Xiao, H. Liu, X. Mei, Y. Liu,
W. Wang, and J. Guan, “First-shot anomalous sound detection
with gmm clustering and finetuned attribute classification us-
ing audio pretrained model,” DCASE2023 Challenge, Tech.
Rep., June 2023.

[24] A. Jiang, Q. Hou, J. Liu, P. Fan, J. Ma, C. Lu, Y. Zhai, Y. Deng,
and W.-Q. Zhang, “Thuee system for first-shot unsupervised
anomalous sound detection for machine condition monitor-
ing,” DCASE2023 Challenge, Tech. Rep., June 2023.

[25] L. Wang, F. Chu, Y. Zhou, S. Wang, Z. Yan, S. Xu, Q. Wu,
M. Cai, J. Pan, Q. Wang, J. Du, T. Gao, X. Fang, and
L. Zou, “First-shot unsupervised anomalous sound detection
using attribute classification and conditional autoencoder,”
DCASE2023 Challenge, Tech. Rep., June 2023.

[26] Y. Zeng, H. Liu, and Y. Zhou, “General anomalous sound
detection using sound event classification and detection,”
DCASE2023 Challenge, Tech. Rep., June 2023.

[27] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic,
W. Wang, and M. D. Plumbley, “AudioLDM: Text-to-audio
generation with latent diffusion models,” 2023.


