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ABSTRACT
Due to the high variation in the application requirements of sound
event detection (SED) systems, it is not sufficient to evaluate sys-
tems only in a single operating point. Therefore, the community
recently adopted the polyphonic sound detection score (PSDS) as
an evaluation metric, which is the normalized area under the PSD-
ROC. It summarizes the system performance over a range of operat-
ing points. Hence, it provides a more complete picture of the overall
system behavior and is less biased by hyper parameter tuning. So
far PSDS has only been computed over operating points resulting
from varying the decision threshold that is used to translate the sys-
tem output scores into a binary detection output. However, besides
the decision threshold there is also the post-processing that can be
changed to enter another operating mode. In this paper we pro-
pose the post-processing independent PSDS (piPSDS) which com-
putes PSDS over operating points with varying post-processings
and varying decision thresholds. It summarizes even more oper-
ating modes of an SED system and allows for system comparison
without the need of implementing a post-processing and without a
bias due to different post-processings. While piPSDS can in prin-
ciple also combine different types of post-processing, we here, as a
first step, present median filter independent PSDS (miPSDS) results
for this year’s DCASE Challenge Task4a systems. Source code is
publicly available in our sed scores eval package1.

Index Terms— sound event detection, polyphonic sound de-
tection, evaluation, post-processing, median filter

1. INTRODUCTION
Machine listening is recently attracting increased interest not only
from academia but also from industry. It is the field of develop-
ing machines which can replicate the human ability of recogniz-
ing and processing a large number of different sounds. There are
many sub-disciplines to machine listing, with sound event detection
(SED) [1] being one of them. Its aim is to recognize, classify and
temporally localize sounds within an input audio. Due to the large
number of possible applications, sounds and environments, one par-
ticular challenge is that there is often no or only little training data
that perfectly matches the target application. Therefore, there is a
particular interest in approaches for model training which can ex-
ploit imperfect data, such as weakly labeled learning [2, 3] and/or
training with mismatched or unlabeled data [4, 5], as investigated
by the Detection and Classification of Acoustic Scenes and Events
(DCASE) Challenge Task 4 [6] for several years now.

Another more fundamental challenge for successful SED sys-
tem development is the meaningful evaluation and comparison of
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1https://github.com/fgnt/sed scores eval

system performance, where the choice of the evaluation metric can
have a large impact [7]. Firstly, there is the complexity of the
event matching between detected and ground truth events. Cur-
rently there exist three different approaches namely segment-based,
collar-based and intersection-based [8, 9]. The DCASE Challenge
Task 4 recently moved to intersection-based evaluation as it is more
robust w.r.t. ambiguities in the ground truth labeling. Secondly,
due to the high variation in application requirements, there is of-
ten not a single optimal system behavior as, e.g., expressed by the
F1-score. In some applications, missed hits may, e.g., be much
more severe than false alarms. Therefore, system evaluation must
ideally represent all different operating modes equally to capture
the overall system behavior. The polyphonic sound detection score
(PSDS) [9, 10] has been employed to capture performance over the
range of decision thresholds, which are used to translate soft system
output scores2 into binary decisions. Therefore, system comparison
using PSDS is also less biased by threshold tuning w.r.t. to a certain
operating point.

However, the post-processing [11] (e.g. median filtering), that
is applied to the classifier output either before or after thresholding,
has also a large impact on the system performance, which is mostly
underinvestigated. In particular, system comparisons may be biased
due to the employment of different post-processings. Also tuning of
the post-processing hyper-parameters may overfit to a certain sce-
nario while performing badly in mismatched scenarios which can
give misleading information on the system itself. Similar to the de-
cision threshold, the type and parameters of the post-processing can
be understood as operating parameters of the system and may be ad-
justed to enter another operating mode which better suits the current
scenario and application requirements.

In this paper we propose post-processing independent PSDS
(piPSDS) which summarizes performance over both different post-
processings and decision thresholds. Hence, it gives an even more
complete picture of the system’s performance over different operat-
ing modes and furthermore is less biased by hyper-parameter tun-
ing. We perform investigations on this year’s DCASE Challenge
Task 4 submissions and show that 1) there is indeed a large im-
pact on evaluation results due to post-processing 2) for different
operating points there are different optimal post-processings and 3)
the proposed piPSDS allows SED system evaluation unbiased from
threshold and post-processing tuning.

The rest of the paper is structured as follows. First, we reca-
pitulate the preliminaries of SED, its evaluation and the PSDS in
Sec. 2.1, Sec. 2.2 and Sec. 2.3, respectively. Our proposed piPSDS
is presented in Sec. 3. Finally, we show results in Sec. 4 and draw
conclusions in Sec. 5.

2Note the ambiguity of the term score here, where PSD score refers to a
metric value while output scores refer to soft class activity predictions of a
model/neural network.

https://github.com/fgnt/sed_scores_eval
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2. PRELIMINARIES

2.1. Sound Event Detection
To not only recognize but also temporally localize sound events,
SED systems perform multi-label classification within smaller time-
windows of an audio clip, e.g., at short-time Fourier transform
(STFT) frame-level. For each window n a system provides soft
classification scores yn,c for each event class c out of a set of C
predefined sound event classes of interest. These scores represent
the predicted activity of the event within a particular time-window.
To obtain a hard decision, soft classification scores can be binarized
using a certain decision threshold γc, where the class c is assumed
active in the n-th window if yn,c ≥ γc, else it is assumed inactive.
Connected active windows are then merged into a detected event
(t̂on,i, t̂off,i, ĉi) defined by onset time t̂on,i, offset time t̂off,i and class
label ĉi, respectively, where i represents the event index. Usually it
is beneficial to run some kind of post-processing before or after bi-
nariazation to obtain meaningfully connected event predictions and
be more robust w.r.t. outliers. Common post-processings are, e.g.,
median filtering [12] and Hidden Markov Model smoothing [13].
The type and hyper-parameters of the post-processing, as well as
the decision threshold and any other hyper-parameters that may be
easily changed during application are summarized as a system’s op-
erating parameters τ in the following.

2.2. Evaluation of Detected Events
The evaluation of the detected events of event class c for specific
operating parameters τ is, in accordance with other classification
tasks, based on counting the intermediate statistics NTP,c,τ , NFN,c,τ

and NFP,c,τ , which refer to the numbers of
• ground truth (GT) events that have been correctly detected by

the system a.k.a. true positive (TP) detections,
• GT events that have not been detected by the system a.k.a. false

negative (FN) detections,
• detected events that do not match any GT event a.k.a. false

positive (FP) detections,
accumulated over the whole evaluation set, respectively. Bilen et
al. [9] have further taken cross triggers (CTs) into account, a.k.a.
substitutions, with NCT,c,k,τ being the number of FPs of class c
matching GT events from another event class k, which may impair
user experience more than standalone FPs.

When counting above intermediate statistics, different ap-
proaches exist for the temporal matching between detected events
and GT events. As the definitions of PSDS and piPSDS, however,
do not depend on the temporal matching that is used, we here only
briefly recap intersection-based evaluation which has recently been
used for PSDS computation as it is more robust w.r.t. ambiguities
in the labeling of the evaluation data. Note, however, that one could
instead also compute segment-based and collar-based [8] (pi)PSDS.

Intersection-based evaluation requires detected events to inter-
sect with GT events by at least a fraction ρDTC to be not counted as
a FP detection. Moreover, it requires a GT event to intersect with
non-FP events by at least a fraction ρGTC to be counted as a TP de-
tection. Further, if an FP event intersects with a GT event of another
class by at least a fraction ρCTTC it is counted as a CT.

Of particular interest are in the following the TP rate (TPR)
defined as rc,τ =

NTP,c,τ
NTP,c,τ+NFN,c,τ

, and the effective FP rate (eFPR)

ec,τ =
NFP,c,τ

Tds
+ αCT

1

C − 1

∑
k

k ̸=c

NCT,c,k,τ

Tk
. (1)

which consists of the FPR NFP,c,τ
Tds

plus an additional penalty on

CT rates (CTRs) NCT,c,k,τ

Tk
averaged over all other classes k ̸= c

and weighted by αCT. Note that, with intersection-based evaluation,
there is not a countable number of negative events, which is why the
FPR is computed w.r.t. the total duration of the evaluation dataset
Tds, whereas CTRs are computed w.r.t. the total duration of activity
Tk of the k-th class within the evaluation dataset.

2.3. Polyphonic Sound Detection Score
To compute PSDS [9], one starts with the computation of single-
class PSD-ROC curves rc(e) for each event class c. rc(e) is ob-
tained as a continuous ”staircase-type” interpolation of true posi-
tive rates rc,τ plotted over corresponding eFPRs ec,τ for different
operating parameters τ ∈ T̂c.

While τ may be any (set of) hyper-parameter(s) that may
change system behavior, it has so far, in accordance with the stan-
dard definition of ROC curves [14], only been considered to be the
decision threshold used to translate soft prediction scores into bi-
nary detections. Here, an algorithm for the efficient joint evaluation
of all possible decision thresholds has been proposed in [10]. Note
that, in contrast to standard ROC curves, it is here not always guar-
anted that rc,τ is monotonically increasing with ec,τ , when, e.g.,
sophisticated intersection-based evaluation is employed. As in op-
eration, however, one would always prefer the operating point with
a higher true positive rate at lower or equal false positive rate if
available, T̂c represents only best case operating parameters:

T̂c =
{
τ
∣∣ ∄λwith ec,λ ≤ ec,τ and rc,λ > rc,τ

}
. (2)

Having the single-class PSD-ROC curves rc(e), the overall
PSD-ROC curve is defined as the effective true positive rate

r(e) = µTP(e)− αSTσTP(e) (3)

which is average per-class true positive rate minus a penalty on stan-
dard deviation over classes weighted by a metric parameter αST with

µTP(e) =
1

C

C∑
c=1

rc(e); σTP(e) =

√√√√ 1

C

C∑
c=1

(rc(e)− µTP(e))2.

Finally, the PSDS is the normalized area under the PSD-ROC:

PSDS =
1

emax

∫ emax

0

r(e)de (4)

with the maximal false positive rate emax being a metric parameter,
which controls up to which false positive rate the operating points
may still be relevant.

3. POST-PROCESSING INDEPENDENT POLYPHONIC
SOUND DETECTION SCORE

Besides the decision threshold there is also the post-processing that
we could change to enter another operating mode. As an exam-
ple, Fig. 1 shows the single-class PSD-ROC curves for ”Speech”
from this year’s ”Baseline BEATS” system [15] when using post-
processing median filtering with lengths of 0.1 s and 1.0 s, respec-
tively. It appears that when the system is operated in low eFPR
mode, than it is better to use the larger median filter window size.
When the system should be operated in high TPR mode, it is better
to use a smaller window size. Thus, it is reasonable and also fairly
easy to choose the post-processing depending on the requirements
of a given application. To account for this in the system evaluation,
which is supposed to capture overall system behavior, we propose
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Figure 1: Baseline Speech ROCs with different median filters

to incorporate the variation of post-processing into the computation
of the PSDS to get a post-processing independent PSDS (piPSDS).

To do so, we consider the operating parameters τ = (l, γ) to be
a tuple of the post-processing l and the decision threshold γ. Here,
l defines which postprocessing is used out of a predefined set of L
possible post-processings.

The definition of the PSD-ROC according to Sec. 2.3 with τ ∈
L×R, where L = {l ∈ N | l < L}, gives us the pi-PSD-ROC. Due
to the restriction to best case operating points in Eq. 2 the single-
class pi-PSD-ROCs can be computed as

rc(e) = max
l

rc,l(e) (5)

where rc,l(e) is the single-class PSD-ROC for a single post-
processing l, which results from variation of the decision thresh-
old and can be efficiently computed using the algorithm from [10].
Hence, the single-class pi-PSD-ROC chooses, for a given eFPR e,
the post-processing with the highest TPR. piPSDS is then, analo-
gously to Eq. 4, the normalized area under the pi-PSD-ROC.

Overall, piPSDS has two major advantages over only threshold-
independent PSDS. Firstly, it better captures real-world SED appli-
cations, where it is natural to choose the post-processing that best
suits the current application requirements. Secondly, for research it
allows for system comparison without a bias being introduced by
different post-processings.

4. RESULTS

Investigations are done with the baseline and submissions of this
year’s DCASE challenge Task4a. Participants have been asked to,
in addition to their post-processed submission, also share the raw
prediction scores as provided by their model/neural network with-
out any further post-processing. This allows us to investigate 1) the
impact of the post-processing, 2) post-processing independent eval-
uation. All following evaluations are performed on the DESED [16]
public eval set, which is a part of the challenge evaluation data.

There are two intersection-based PSDS evaluated in the chal-
lenge, which refer to different scenarios. PSDS1 (ρDTC = 0.7,
ρGTC = 0.7, αCT = 0, αST = 1, emax = 100/hour) particu-
larly evaluates the model’s capability of temporally localizing sound
events, whereas PSDS2 (ρDTC = 0.1, ρGTC = 0.1, ρCTTC = 0.3,
αCT = 0.5, αST = 1, emax = 100/hour) is more focused on evalu-
ating the reliable recognition of event classes within an audio clip.
Due to space constraints and with post-processing being particu-
larly relevant for the temporal localization of sound events, we only
consider PSDS1 evaluation in the following.

With median filtering being the most popular type of post-
processing for SED systems, we here consider median filter inde-
pendent PSDS (miPSDS) as an instance of piPSDS, where the set
of possible post-processings consists of median filters with differ-
ent filter lengths. As the set of median filter lengths we use 21 filter
lengths linearly spaced from 0.0 s (no filtering) to 1.0 s, 10 from
1.1 s to 2.0 s, 5 from 2.2 s to 3.0 s and 4 from 3.5 s to 5.0 s over-
all totaling 40 different filter lengths. The implementation of the
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Figure 2: Upper Plot: PSD-ROCS for different post-processing se-
tups. Lower Plot: Optimal median filter lengths over operating
points as tracked by median filter independent PSD-ROC.

median filter equals a time continuous filtering of a piece-wise con-
stant signal that is defined by the timestamped prediction scores3

submitted by the participants. This way it is ensured the systems
employ the very same post-processing regardless of the system’s
output resolution which may vary across systems. Implementations
of the median filter, miPSDS and piPSDS, with the latter taking any
list of differently post-processed scores, are publicly available in the
sed scores eval package1, that is, in accordance with the challenge,
used for evaluation.

We first run investigations on the baseline system Base-
line BEATS [15] (Baseline). In the upper subplot of Fig. 2 we com-
pare the following PSD-ROCs:

1. median filter independent: as defined in Eq. 3
2. best median filters: choosing best performing median filter

per class as follows
r̃c(e) = rc,b(e) with b = argmaxlauc(rc,l(e)),

3. without any post-processing.

It can be seen, that by applying (best) median filtering the PSD-ROC
can be significantly improved over the unprocessed case. It can
be further observed, that there are operating points, especially for
low eFPRs, where the mi-PSD-ROC (mi-PSD-ROC) is higher than
best median filter PSD-ROC. This indicates that best median filters
are, although giving best overall performance, not the best choice
for each individual operating point and better performance can be
achieved by choosing operating point dependent filter lengths as
the mi-PSD-ROC does. In the lower subplot of Fig. 2 we plot, for
some event classes, the optimal filter lengths over operating points.
We can see that for lower eFPRs optimal median filters tend to be
longer than for higher eFPRs, which can be explained by the fact
that longer median filters better suppress short duration FPs. Fur-
ther, event classes with longer per-event durations, such as ”Frying”
and ”Running Water”, tend to have overall longer median filters
than short duration event classes, which makes intuitively sense.

Next, we evaluate challenge submissions4 with, without and in-
dependent of post-processing. As submitting unprocessed scores
was optional, we evaluate only systems from the 12 teams
that did provide them. We limit evaluation to the one single-
model system per team that gave best PSDS1 performance in
the challenge (with original post-processing). These systems

3Note that median filtering and thresholding are permutation invariant,
i.e., applying the median filter before binarization yields the same result as
applying it afterwards

4https://zenodo.org/record/8248774

https://zenodo.org/record/8248774
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Figure 3: System Evaluation. Upper Plot: original post-processing vs. no post-processing. Middle Plot: miPSDS vs. PSDS with optimal
median filter lengths per class vs. no post-processing. Lower Plot: miPSDS computed with unprocessed vs. post-processed data.

are Barahona-AUDIAS-2 [17], Cheimariotis-DUTH-1 [18], Chen-
CHT-2 [19], Guan-HIT-3 [20], Kim-GIST-HanwhaVision-2 [21],
Lee-CAUET-1 [22], Li-USTC-6 [23], Liu-NSYSU-7 [24], Liu-
SRCN-4 [25], Wang-XiaoRice-1 [26], Wenxin-TJU-6 [27], Xiao-
FMSG-4 [28].

To be able to evaluate the variance of system performance over
different runs of system training, participants submitted prediction
scores for three runs of training for each system. To further track
variance of results due to variations in the evaluation data, we per-
form bootstrapped evaluation, where evaluation is performed on
20 different 80% fractions of the eval data. In total we evaluate
3 · 20 = 60 different setups and report the mean and 5% − 95%
confidence interval of the system’s performances. This evaluation
procedure is the same as we used for official challenge evaluation.

We first want to investigate the impact of the post-processing
on the systems’ performances in the upper subplot of Fig. 3. by
comparing the performance with and without the post-processing
as used by the participants. It appears that for some systems,
e.g., Kim-GIST-HanwhaVision-2, the performance significantly de-
grades when removing the post-processing, whereas for other sys-
tems the performance does not degrade or even improves. When
evaluating the unprocessed scores, the ranking also changes at mul-
tiple positions to Kim, Chen, Li, Xiao, Cheimariotis, Wenxin, Base-
line, Liu NSYSU, Guan, Wang, Lee, Liu SRCN, Barahona. This
suggests that there is some bias introduced by the post-processing,
particularly, whether a sophisticated post-processing is employed or
not. To some extent, however, it may also be a system property that
it can benefit from post-processing more than other systems.

We next evaluate our proposed miPSDS and compare it to ”no
processing” and ”best median filters” in the middle subplot of Fig. 3.
It can be seen that for all systems performance can be improved by
best median filters and further improved by operating point specific

median filters as considered by miPSDS. Some systems, e.g., Kim
and Barahona, benefit more from best median filters / median fil-
ter independent evaluation than others, which can be explained by
our previous assumption that the effectiveness of post-processing
is to some extent also a system property. Here, miPSDS evalua-
tion gives again a different ranking which is Kim, Chen, Wenxin,
Xiao, Cheimariotis, Li, Guan, Liu NSYSU, Baseline, Wang, Lee,
Liu SRCN, Barahon.

Note, that it is still possible to run additional post-processing
before piPSDS evaluation to improve performance. However, it can
be assumed that the possible gain is rather small and it is more likely
that an additional post-processing degrades piPSDS. To investi-
gate this, we compare miPSDS evaluated on unprocessed scores
vs. scores with participants’ original post-processing in the lower
subplot of Fig. 3. It can be seen that in all cases the additional post-
processing degrades miPSDS performance.

5. CONCLUSIONS

Due to the high variation of SED system application requirements,
SED evaluation has to capture the overall system behavior over var-
ious operating points. Therefore, the community recently moved to
decision threshold independent evaluation using PSDSs to capture
performance over different decision thresholds used for binarization
of system output scores. In this paper we proposed piPSDS which
further evaluates performance over different post-processings and
effectively choosing the post-processing that is best suited for a cer-
tain operating mode. It has been shown that piPSDS indeed over-
comes the bias introduced due to different post-processings but still
accounts for system-specific effectiveness of post-processing. It fur-
ther allows for system comparison without the need of employing a
sophisticated post-processing, e.g., during system development.
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