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ABSTRACT

For learning-based sound event localization and detection (SELD)
methods, different acoustic environments in the training and test
sets may result in large performance differences in the validation
and evaluation stages. Different environments, such as different
sizes of rooms, different reverberation times, and different back-
ground noise, may be reasons for a learning-based system to fail.
On the other hand, acquiring annotated spatial sound event sam-
ples, which include onset and offset time stamps, class types of
sound events, and direction-of-arrival (DOA) of sound sources is
very expensive. In addition, deploying a SELD system in a new
environment often poses challenges due to time-consuming train-
ing and fine-tuning processes. To address these issues, we propose
Meta-SELD, which applies meta-learning methods to achieve fast
adaptation to new environments. More specifically, based on Model
Agnostic Meta-Learning (MAML), the proposed Meta-SELD aims
to find good meta-initialized parameters to adapt to new environ-
ments with only a small number of samples and parameter updating
iterations. We can then quickly adapt the meta-trained SELD model
to unseen environments. Our experiments compare fine-tuning
methods from pre-trained SELD models with our Meta-SELD on
the Sony-TAU Realistic Spatial Soundscapes 2023 (STARSSS23)
dataset. The evaluation results demonstrate the effectiveness of
Meta-SELD when adapting to new environments.

Index Terms— SELD, MAML, unseen environments, fast
adaptation, meta-learning, few-shot

1. INTRODUCTION

Sound event localization and detection (SELD) refers to detect-
ing categories, presence, and spatial locations of different sound
sources. SELD characterizes sound sources in a spatial-temporal
manner. SELD was first introduced in Task 3 of the Detection and
Classification of Acoustics Scenes and Events (DCASE) 2019 Chal-
lenge [1]. After three iterations of Task 3 of the DCASE Chal-
lenge, types of data transform from computationally generated spa-
tial recordings to real-scene recordings [2].

SELD can be regarded as a Multi-Task Learning problem. Ada-
vanne et al. [3] proposed SELDnet for a joint task of sound event
detection (SED) and regression-based direction-of-arrival (DOA)

estimation. SELDnet is unable to detect homogeneous overlap,
which refers to overlapping sound events of the same type but with
different locations. The Event-Independent Network V2 (EINV2),
with a track-wise output format and permutation invariant training,
was proposed to tackle the homogeneous overlap detection prob-
lem [4–6]. Different from two outputs of SED and DOA in SELD-
net and EINV2, the Activity-coupled Cartesian DOA (ACCDOA)
approach merges two subtasks into a single task [7, 8]. The Carte-
sian DOA vectors contain the activity information of sound events
in the ACCDOA method.

In practical SELD system deployment, unseen complex envi-
ronments may lead to performance degradation. In the STARSS22
dataset [2], there are no duplicated recording environments in the
training and validation sets. Our previous system submitted to Task
3 of the DCASE 2022 Challenge obtained the second rank in the
team ranking [9]. However, we found unsatisfactory generaliza-
tion performance for fold4 room2 recordings in the dev-test-tau set
of STARSS22 [9]. Experimental results show that class-dependent
localization error LECD is high and location-dependent F-score
F≤20◦ is low, but class-dependent localization recall LRCD is high.
This suggests there may be the weak localizing performance of our
system in fold4 room2. In addition, manually annotated spatial
sound event recordings are very expensive. Taking the STARSS22
dataset for example [2], each scene was captured with a 32-channel
spherical microphone array, a 360◦ camera, a motion capture (mo-
cap) system, and wireless microphones. Onset, offset, and class
information of sound events were manually detected and classified
by annotators through listening to wireless microphone recordings
and watching video recordings, while positional annotations were
extracted for each event by masking the tracker data with the tem-
poral activity window of the event. In the end, 360◦ video record-
ings are utilized to validate those annotations. This type of complex
recording and annotation process means that large datasets of the
annotated spatial recording might be expensive.

Few-shot learning can act as a test bed for learning like hu-
mans, allowing a system to learn from small samples and reducing
data gathering effort and computation [10]. Meta-learning, which
facilitates few-shot learning, learns a general-purpose learning al-
gorithm that generalizes across tasks and ideally enables each new
task to be learned well from the task-distribution view [11]. Meta-
learning has advanced few-shot learning significantly in computer
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Figure 1: The multi-ACCDOA representation of the SELD model.
There is no track dimension in the ACCDOA representation.

vision [12,13]. One of the most successful meta-learning algorithms
is model-agnostic meta-learning (MAML) [14]. MAML tries to
learn general initial parameters that can be rapidly adapted to an-
other task. The method is model-agnostic and compatible with any
model trained with gradient descent. It can be applicable to a variety
of different learning problems, including classification, regression,
and reinforcement learning. In audio signal processing, the meta-
learning method has recently attracted interest as a way to solve
few-shot learning problems recently. Meta-TTS [15] is proposed
to build personalized speech synthesis systems with few enrolled
recordings of unseen users’ voices using MAML. In [16], MAML
is utilized to allow sound source localization models to adapt to dif-
ferent environments and conditions.

In this paper, we propose Meta-SELD, applying meta-learning
to SELD models with activity-coupled Cartesian DOA (ACCDOA)
representation [7] to improve performance, especially in localiza-
tion. We use MAML to find general initial parameters to min-
imize the loss across several tasks in Meta-SELD so that it can
quickly adapt to an unseen environment. We take recordings in
different environments as different tasks and aim to improve the
performance of a specific unseen environment with a few samples
recorded in the same environment. The experimental results demon-
strate that Meta-SELD outperforms the fine-tuning method from the
pre-trained SELD model in the STARSS23 dataset.

2. RELATED WORK

Activity-coupled Cartesian DOA (ACCDOA) representation [7] as-
signs a sound event activity to the length of a corresponding Carte-
sian DOA. When inferring, the threshold is set for the length of
class-wise Cartesian DOA vectors to determine whether an event
class is active. In contrast to EINV2, the ACCDOA representation
merges SED and DOA branches into a single branch, decreasing the
model parameters and avoiding the necessity of balancing the loss
measuring on the SED task and the DOA task.

The ACCDOA representation can not detect homogenous over-
laps. Therefore, multi-ACCDOA which still contains a single
branch and combines class-wise output format and track-wise out-
put format, is proposed to overcome the problem [8]. While each
track in the track-wise output format of EINV2 only detects one
event class and a corresponding location, each track in the multi-
ACCDOA predicts activities and corresponding locations of all tar-
get classes. Auxiliary duplicating permutation invariant training
(ADPIT) is also proposed to train each track of the multi-ACCDOA
with original targets and duplicated targets, enabling each track to
regard the same target as the single one. The multi-ACCDOA rep-
resentation is shown in Fig. 1. Its outputs are track-wise and class-
wise Cartesian DOA vectors. Each vector length indicates the ac-
tivity of the event. Besides the activity threshold, multi-ACCDOA
employs angle thresholds to determine whether the predicted ob-
jects are the same or different.

3. META-SELD

3.1. The SELD model

Without loss of generality, in this study, we adopt a simple Convolu-
tional Recurrent Neural Network (CRNN) as our network, which is
similar to the baseline of Task 3 of DCASE 2022 Challenge [2] but
with ACCDOA format. The network has three convolution blocks
followed by a one-layer bidirectional gated recurrent unit (BiGRU).
The network takes the concatenation of log-mel spectrograms and
intensity vectors as input and predicts active sound events with cor-
responding Cartesian DOA vectors for each time step. The network
architecture of CRNN is shown in Table 1.

Table 1: The network architecture of CRNN

Log-mel spectrogram & Intensity vectors
(Conv2d 3× 3 @ 32, BatchNorm2d, ReLU)× 2, Avg Pooling 2× 2
(Conv2d 3× 3 @ 64, BatchNorm2d, ReLU)× 2, Avg Pooling 2× 2
(Conv2d 3× 3 @ 128, BatchNorm2d, ReLU)× 2, Avg Pooling 2× 2
(Conv2d 3× 3 @ 256, BatchNorm2d, ReLU)× 2, Avg Pooling 1× 2

Global average pooling @ frequency
1-layer BiGRU of 128 hidden size, 256× 39 linear layer, Tanh

Mean Square Error

3.2. Meta-SELD training

Given a model represented by a parameterized function fΘ with pa-
rameters Θ, MAML [14] learns the initial parameters Θ0 from gen-
eral tasks Ti sampled from the training setDtrain and is expected to
perform well on unseen tasks from the test set Dtest after a few it-
erations of parameters update with a small number of samples from
the corresponding task. These initial parameters are very sensitive
to being further optimized on a specific task. Each task Ti consists
of a labeled support set Si of K samples and a labeled query setQi

of Q samples. A new task is expected to be quickly adapted with K
samples, which is known as K-shot learning. The loss function of
MAML is defined as

L =
∑

Ti∼p(T )

LTi(fΘ) (1)

where p(T ), which is sampled from Dtrain, is a distribution over
tasks that we want our model to be able to adapt to. In contrast to
supervised deep learning methods, the objective of which is to find
optimal parameters to minimize the loss function across all train-
ing samples, MAML tries to find generalized initial parameters for
different tasks. MAML will then update the initial parameters after
several iterations of training on data of new tasks.

There are two groups of parameters in the MAML algorithm,
meta-parameters and adapt-parameters. In the meta-training phase,
MAML starts with randomly initialized meta-parameters Θ and
then adapts to a new specific task Ti with several update iterations
using Si. The meta-parameters Θ become adapt-parameters Θ′

i:

Θ′
i = Θ− α∇ΘLTi (fΘ,Si) (2)

where α is the adaptation learning rate for adapt-parameters up-
dates. After updates across a batch of tasks, the meta-parameters
are updated as:

Θ = Θ− β∇Θ

∑
Ti

LTi

(
fΘ′

i
,Qi

)
(3)
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Algorithm 1 Meta-training of MAML for Meta-SELD

Require: Distribution over all rooms p(T ), adaptation step size α,
meta step size β

1: randomly initialize meta-parameters Θ
2: while not done do
3: Sample a batch of rooms Ti ∼ p(T )
4: for each room Ti do
5: Sample disjoint examples (Si,Qi) from Ti
6: Let Θi,0 ← Θ
7: for gradient descent step j := 0 to N − 1 do
8: Perform gradient descent to update adapt-parameters:

Θi,j+1 ← Θi,j − α∇ΘiLTi (Θi,j ,Si)
9: end for

10: Compute LTi(fΘi,N ,Qi)
11: end for
12: Perform gradient descent to update meta-parameters:

Θ← Θ− β∇Θ

∑
Ti
LTi

(
fΘi,N ,Qi

)
13: end while

where β is the meta step size. The loss LTi is calculated by the
parameterized function fΘ′

i
on the query set Qi. After updating

Θ on the query set, Θ will be used as initial parameters for the
following meta-training steps.

We aim to adapt to an unseen environment with K samples (K-
shot). The objective of MAML is to find optimal initial parameters
across several tasks, so we need to construct a set of tasks from
the training set Dtrain. Dtrain is split according to the different
recording rooms. Audio clips recorded in different rooms belong
to different tasks. We first sample a batch of tasks from all tasks
and then sample K + Q samples in each task, where K samples
for a support set Si and Q samples for a query set Qi. The overall
training procedure of MAML is summarized in Algorithm 1. Step 8
in Algorithm 1 is an inner-loop update for adapt-parameters, while
Step 12 is outer-loop updates for meta-parameters.

3.3. Meta-SELD test

In the meta-testing phase, a specific unseen task T test
j created using

Dtest is used. T test
j consists of a labeled support set Stestj of K

samples, and an unlabeled query set Qtest
j of Q samples. After

training the model using well-trained parameter Θ from the meta-
training phase as the initial parameters on Stestj , we get updated
parameters Θj

′. We then use fΘ′
j

to evaluate onQtest
j .

The meta processes for testing and training are slightly differ-
ent. Similar to the training, the test setDtest is split according to the
recording room of each audio clip. For clips of each room, we also
chose K samples for meta-test support set Stestj and all remaining
samples for meta-test query setQtest

j . After N iterations of param-
eters update on Stestj , the meta-parameters Θ are updated to Θj,N .
The final performance is evaluated onQtest

j with fΘj,N .

4. EXPERIMENTS

4.1. Dataset

There are 16 different recording rooms in total in the development
set of the STARSS23 dataset, including nine recording rooms in
dev-train-set and seven recordings rooms in dev-test-set. The de-
velopment set of STARSS23, which contains roughly 7.5 hours of
recordings, has less data than the development set in DCASE 2021,

which contains roughly 13 hours of synthetic recordings [17]. Con-
sidering the complexity of the real-scene environment, we use ad-
ditional datasets to improve the performance. We generated simu-
lated data using the generator code provided by DCASE1. We syn-
thesize multi-channel spatial recordings by convolving monophonic
sound event examples with multi-channel Spatial Room Impulse
Responses (SRIRs). Samples of sound events are selected from
AudioSet [18] and FSD50K [19], based on the affinity of the la-
bels in those datasets to target classes in STARSS23. PANNs [20]
are then employed to clean the selection of the clips. We use pre-
trained PANNs to infer these clips and select high-quality clips
based on output probability above 0.8. We extracted SRIRs from
the TAU Spatial Room Impulse Response Database (TAU-SRIR
DB)2, which contains SRIRs captured in 9 rooms at Tampere Uni-
versity. It was used for official synthetic datasets in DCASE 2019-
2021 [1, 17, 21].

The 2700 1-minute audio clips that we synthesized using the
abovementioned SRIRs from 9 rooms are used for Dtrain, and all
of dev-set of STARSS23, recorded in 16 rooms, are used for Dtest.

4.2. Experimental setup

The sampling rate of the dataset is 24 kHz. We extracted 64-
dimensional log mel spectrograms from four-channel first-order
ambisonics (FOA) signals with a Hanning window of 1024 points,
and a hop size of 320. Each audio clip is segmented to a fixed length
of five seconds with no overlap for training and inference.

In the meta-training phase, the training set and test set are di-
vided into 9 tasks and 16 tasks, respectively, corresponding to 9
rooms and 16 rooms. We first sample a batch of rooms randomly
and then sample a batch of examples from each of the rooms. The
batch of samples of each room constructs a task, and a part of the
samples are support samples while the remaining samples are query
samples. The batch size of rooms and samples is 4 and 64, respec-
tively. A batch of samples contains 30 support samples and 34 query
samples. In the meta-test phase, we sort the audio clips according
to the filename, and select the first 30 samples of recordings of each
room as samples from the support set Stestj . The remaining samples
of each room are as samples from the test set Qtest

j . The AdamW
optimizer is used for updates of meta-parameters of MAML, while
the SGD optimizer is used to update adapt-parameters. The meta
step size β begins with 0.001 in the first 100 epochs out of 150
epochs in total and is then decreased by 10% every 20 epochs. The
adaptation step size and the number of update iterations are always
kept at 0.01 and 5, respectively.

To demonstrate the effectiveness of Meta-SELD, we compare
Meta-SELD with the fine-tuning method from the pre-trained SELD
model. Firstly, we train a SELD model with AdamW optimizer in
Dtrain from scratch. The learning rate is 0.0003 for the first 70
epochs and then decreases to 0.00003 for the following 20 epochs.
Secondly, we initialize the parameters from the previously trained
SELD model and then use Stesti and Qtest

i as the training set and
the test set of the i-th room to fine-tune. Similar to the process of
the adapt-parameters updates in MAML, the SGD optimizer with a
step size of 0.01 and update iterations of 5 are used for fine-tuning.

A joint metric of localization and detection [22, 23] is used:
location-dependent F-score (F≤20◦ ) and error rate (ER≤20◦ ), and
class-dependent localization recall (LRCD) and localization error

1https://github.com/danielkrause/DCASE2022-data-generator
2https://zenodo.org/record/6408611
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Table 2: The performance of the Meta-SELD and fine-tuning methods from pre-trained SELD models. Both two methods are evaluated in
Qtest

i . Note that overall scores of the fine-tuning method and Meta-SELD compute the fast adaptation performance of each individual room
and then micro-average.

Room ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓
Pre-train Fine-tune Meta Pre-train Fine-tune Meta Pre-train Fine-tune Meta Pre-train Fine-tune Meta Pre-train Fine-tune Meta

fold3 room4 0.624 0.574 0.603 44.5% 40.4% 29.8% 17.8◦ 17.6◦ 21.5◦ 64.6% 61.2% 54.4% 0.408 0.414 0.470
fold3 room6 0.639 0.607 0.594 38.0% 40.5% 40.4% 18.0◦ 17.2◦ 17.4◦ 65.3% 63.8% 61.1% 0.427 0.415 0.419
fold3 room7 0.610 0.606 0.660 31.1% 30.7% 20.8% 23.6◦ 24.1◦ 22.5◦ 59.9% 60.5% 48.3% 0.458 0.457 0.523
fold3 room9 0.673 0.601 0.608 43.7% 46.6% 47.5% 19.1◦ 18.6◦ 18.3◦ 78.7% 78.2% 73.3% 0.389 0.364 0.375
fold3 room12 0.685 0.659 0.689 28.0% 29.8% 33.0% 26.8◦ 26.1◦ 33.3◦ 43.1% 43.6% 46.3% 0.531 0.518 0.520
fold3 room13 0.650 0.599 0.594 37.7% 39.4% 36.1% 17.5◦ 16.9◦ 15.9◦ 50.9% 48.8% 37.1% 0.465 0.453 0.488
fold3 room14 0.633 0.582 0.613 40.2% 37.4% 28.6% 23.2◦ 23.7◦ 24.8◦ 55.3% 54.0% 47.2% 0.452 0.450 0.498
fold3 room21 0.757 0.750 0.735 19.3% 21.6% 18.9% 20.5◦ 18.9◦ 20.6◦ 39.3% 31.4% 43.8% 0.571 0.581 0.556
fold3 room22 0.850 0.818 0.800 11.4% 12.8% 16.7% 31.6◦ 29.5◦ 29.0◦ 45.6% 43.8% 48.8% 0.614 0.604 0.577
fold4 room2 0.809 0.774 0.753 6.2% 8.2% 15.4% 47.8◦ 41.3◦ 33.0◦ 72.4% 72.4% 75.7% 0.572 0.550 0.506
fold4 room8 0.716 0.716 0.702 31.7% 33.6% 30.7% 22.5◦ 21.0◦ 23.2◦ 54.0% 49.4% 49.4% 0.496 0.501 0.507
fold4 room10 0.792 0.708 0.651 36.3% 41.7% 35.8% 23.8◦ 21.5◦ 20.2◦ 66.1% 72.0% 78.2% 0.475 0.423 0.406
fold4 room15 0.582 0.563 0.539 33.3% 33.5% 43.4% 16.5◦ 15.5◦ 19.3◦ 42.8% 42.6% 59.0% 0.478 0.472 0.406
fold4 room16 0.601 0.584 0.607 39.8% 40.5% 34.3% 21.7◦ 21.9◦ 21.6◦ 55.1% 54.9% 48.7% 0.443 0.438 0.474
fold4 room23 0.813 0.746 0.676 25.4% 26.5% 31.8% 26.2◦ 24.9◦ 25.8◦ 40.4% 43.6% 47.3% 0.575 0.546 0.507
fold4 room24 0.828 0.779 0.782 26.2% 25.7% 30.8% 19.4◦ 19.7◦ 24.4◦ 41.0% 43.6% 42.7% 0.566 0.549 0.546

Overall 0.707 0.677 0.672 23.0% 24.2% 26.0% 22.8◦ 22.3◦ 21.9◦ 39.5% 40.2% 41.0% 0.552 0.539 0.531

(LECD). F≤20◦ and ER≤20◦ consider true positives predicted un-
der a spatial threshold 20◦ from the ground truth. LECD and LRCD

are computed for localization predictions in the case that the types
of sound events are predicted correctly. A macro-average of F≤20◦ ,
LRCD and LECD is used.

We use an aggregated SELD metric which was computed as

ESELD =
1

4

[
ER≤20◦ + (1− F≤20◦) +

LECD

180◦
+ (1− LRCD)

]
.

(4)

4.3. Experimental results

Table 2 shows the performance of the Meta-SELD method com-
pared with the fine-tuning method from the pre-trained SELD mod-
els. The pre-trained SELD models are trained without using sam-
ples from Dtest.

According to the last row of Table 2, the overall score, which
is a micro average across all rooms, shows that all of ER≤20◦ ,
F≤20◦ , LECD, and LRCD are improved using Meta-SELD com-
pared with the fine-tuning method. We observe a drop in ESELD
in fold3 room4 and fold4 room8 even though some new sam-
ples of unseen environments are used for training. This may be
due to the fact that the new samples do not have valid informa-
tion for training. We also observe the Meta-SELD method im-
proves ESELD by a large margin in fold3 room22, fold4 room2, and
fold4 room23 where the pre-trained model has poor performance
across all rooms. Specifically, ER≤20◦ , F≤20◦ , and LRCD of
fold3 room22 and fold4 room23 outperform other methods. Meta-
SELD mainly improves the performance of SED in fold3 room22
and fold4 room23. All metrics of fold4 room2 are improved in
Meta-SELD compared with the fine-tuning method, especially in
DOA estimation. In fold4 room2, all of the pre-trained model,
the fine-tuning method, and Meta-SELD achieve LRCD of over
70%, but LECD of three methods is always high compared with
LECD of other rooms. Meta-SELD decreases 14.8◦ and 8.3◦ of
LECD compared with the pre-trained model and the fine-tuning
method in fold4 room2, hence directly leading to the increase of
F≤20◦ and the decrease of ER≤20◦ . However, performance degra-
dation happens in fold3 room4, fold3 room7, fold3 room14, and
fold4 room16, where Meta-SELD has the worst metric scores.
There is no significant change in LECD, and the decline in SED

performance is the main factor. One of the possible reasons for
this observation could be that there are some conflicts in optimizing
Meta-SELD across a batch of rooms.

Experimental results demonstrate that Meta-SELD can find bet-
ter initial parameters across a batch of tasks than the fine-tuning
method, especially in rooms where the pre-trained model and the
fine-tuning method perform worse. Meta-SELD reduces the risk of
overfitting when using a small number of samples, which usually
happens in the fine-tuning method.

5. CONCLUSION

In this paper, we presented Meta-SELD, which employed Model-
Agnostic Meta-Learning (MAML) to the sound event localization
and detection task to achieve fast adaptation to unseen environ-
ments. The method only utilizes a small number of samples and
a few update iterations of training. We use the STARSS23 dataset
and synthesized 2700 1-minute samples that are convolved using
monophonic sound event clips with multi-channel spatial room im-
pulse responses. The sound event clips are extracted from FSD50K
and AudioSet and are further filtered by the PANNs model through
a probability threshold. The SRIRs used are from TAU-SRIR DB.
Our methods are trained on synthetic datasets and evaluated on all
development sets of the STARSS23 dataset. Audio clips recorded
from the same room or synthesized using SRIRs collected from the
same room are regarded as the same task for MAML. The exper-
imental results show that the Meta-SELD method improves ESELD
significantly in those rooms where both the pre-trained model and
the fine-tuning method perform unsatisfactorily. The overall score
demonstrates that the Meta-SELD method outperforms the fine-
tuning method on average.
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