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ABSTRACT 

This paper proposes a convolutional recurrent neural network 
(CRNN)-based sound event detection (SED) model. The pro-
posed model utilizes frequency dynamic convolution (FDY) with 
a large kernel attention (LKA) for convolution operations within 
the CRNN. This is designed to effectively capture time-frequency 
patterns and long-term dependencies for non-stationary audio 
events. In addition, we concatenate a pre-trained bidirectional en-
coder representation from audio transformers (BEATs) embed-
ding with the output of FDY–LKA. This provides the FDY-based 
feature maps with semantic information. Given the limited labeled 
data condition of the DCASE Challenge dataset, we first employ 
the mean-teacher-based semi-supervised learning. Then, we pro-
pose label filtering-based self-learning for audio event data selec-
tion, when their pseudo labels predicted from the mean-teacher 
model are strong correlated with given weakly labels. This strat-
egy applies weakly labeled and unlabeled data, and then extends 
to the AudioSet. We evaluate its performance of the proposed 
SED model on DCASE 2023 Challenge Task 4A, measuring the 
F1-score and polyphonic sound detection scores, namely PSDS1 
and PSDS2. The results indicate that the proposed CRNN-based 
model with FDY–LKA improves the F1-score, PSDS1, and 
PSDS2 in comparison to the baseline for DCASE 2023 Challenge 
Task 4A. When we apply the BEATs embedding via average 
pooling to both the baseline and the proposed model, we find that 
the performance of the proposed model significantly outperforms 
the baseline, with an F1-score of 6.2%, a PSDS1 score of 0.055, 
and a PSDS2 score of 0.021. Consequently, our model is ranked 
first in the DCASE 2023 Challenge Task 4A evaluation for a sin-
gle model track, and second for an ensemble model. 

Index Terms—Sound event detection, semi-supervised 
learning, label filtering-based self-learning, frequency dy-
namic convolution, large kernel attention, BEATs embed-
ding 

1. INTRODUCTION 

The objective of sound event detection (SED) is to recognize and 

classify individual sound events originating from acoustic signals, 
along with their corresponding time stamps. The potential appli-
cations of the SED model have been attracted from audio caption-
ing [1] to various domains, such as wildlife tracking [2], equip-
ment monitoring [3], and medical monitoring [4]. In recent years, 
SED has been extensively researched using deep learning models 
[5]. However, a significant challenge in using deep learning for 
SED is the requirement of strong labels, which are expensive and 
time-consuming. This problem has led to develop weakly super-
vised or semi-supervised learning techniques to mitigate such la-
bel requirement. 

To address this problem, we apply a self-learning strategy 
based on label filtering to train the proposed SED model when the 
quantity of labeled training data is limited. The proposed model is 
based on a convolutional recurrent neural network (CRNN), 
where the convolution is realized with frequency dynamic convo-
lution (FDY) [6] with large kernel attention (LKA) [7].  

As a remedy for limited resources, we use select data from 
the AudioSet [8] as additional training material. In this context, 
the audio class of each data item from AudioSet is mapped into 
that of the DCASE Challenge Task 4A and data belonging to the 
DCASE audio class are selected. However, even though this ap-
proach of using additional AudioSet data improves SED perfor-
mance [9], it leads to a data imbalance issue. Furthermore, this 
method tends to include audio data whose characteristics differ 
from those in the DCASE training set. Thus, we propose an alter-
native in the form of a label filtering-based self-learning method 
to select appropriate data from AudioSet by examining the infer-
ence probability during model training.  

Next, one of the most successful components in detection 
models is the application of an attention mechanism, which em-
phasizes semantic knowledge in the feature map. Of late, there 
have been several types of attention mechanisms, like squeeze-
and-excitation (SE) [10] and convolutional block attention mod-
ule (CBAM) [11], which are designed to accommodate channel 
and/or spatial information for attention. These mechanisms alter 
or reshape an image to obtain attention weights, given that images 
are shift-invariant for classification or detection. However, the 
spectrogram image of an audio event signal is neither shift-invar-
iant nor stationary, necessitating an attention mechanism with un-
altered attention weights. 

Inspired by image classification and detection [7], we incor-
porate LKA into the sound event detection model. Combining this 
enables us to maintain long-term dependency for the attention, 
even when the audio signals are non-stationary. To the best of our 
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knowledge, we are the first to apply this to sound event detection 
tasks.  

Our contributions can be summarized as follows: 
l We have developed a label-filtering approach to supplement 

training data from weakly-labeled out-of-domain sources, 
such as AudioSet, within a self-learning-based model train-
ing framework. As a result, we have improved the detection 
accuracy of sound event detection. 

l Additionally, we have integrated an attention mechanism, 
the large kernel attention (LKA), proposed for image classi-
fication and detection, into the sound event detection model. 
This is vital as audio signals are inherently non-stationary, 
necessitating the retention of long-term dependency for the 
attention.  

l We have applied our proposed training strategy to designing 
SED models for the DCASE 2023 Challenge Task 4A and 
achieved the best performance in terms of F1-score and 
PSDSs [12] without an ensemble. Moreover, our ensemble 
model ranked second. 
 
Following this introduction, Section 2 describes the dataset 

and input features of the SED model. Section 3 proposes a label 
filtering-based self-learning strategy applied to the FDY–LKA-
CRNN model. Next, Section 4 evaluates the performance of the 
proposed SED models on the validation dataset task of DCASE 
2023 Task 4A. Finally, Section 5 concludes this paper. 

2. DATASET  

The DCASE 2023 Challenge Task 4A consists of four datasets: 
weakly labeled data, unlabeled in-domain training data, strongly 
labeled synthetic data, and strongly labeled real data. All the audio 
clip data span 10 seconds each. The strongly labeled synthetic da-
taset is unique in that it is generated by Scraper [13]. The weakly 
labeled dataset only has class labels and is annotated for 1,578 

clips. The unlabeled in-domain training dataset includes 14,412 
audio clips. Meanwhile, the real strongly labeled and synthetic 
datasets comprise 3,470 and 10,000 clips, respectively. In addi-
tion to the DCASE dataset, we utilize a subset of AudioSet that 
includes 18,000 clips with in-domain weak labels. 

The following preprocessing steps are employed to prepare 
the data for input to the model: First, the mono-channel signals 
are resampled from 44.1 to 16 kHz. Subsequently, the audio sig-
nals are divided into frames of 2,048 samples each, with a hop 
length of 160 samples. Each frame first undergoes a 2,048-point 
fast Fourier transform (FFT), followed by a 128-dimensional mel-
filterbank analysis. This results in input feature dimensions of 
(1001x128). The extracted mel-spectrogram features are then nor-
malized using the mean and standard deviation of all the training 
audio samples. 

3. PROPOSED FDY–LKA-CRNN-BASED SED MODEL 

Fig. 1 illustrates the training procedure of the proposed FDY–
LKA-CRNN-based SED model, which employs a label filtering-
based self-learning strategy. As depicted in the upper-left arm of 
the figure, an SED model is initially trained using the mean-
teacher approach, where the entire DCASE Challenge Task 4A da-
taset is utilized. For a detailed procedure of this first-stage training, 
please refer to the training description in [14]. Subsequently, label 
filtering is carried out to select audio event data from AudioSet for 
the training of the second-stage SED model. This selection process 
is designed to choose audio event data for which the pseudo-labels, 
predicted from the first-stage SED model, strongly correlate with 
the weak labels provided by the AudioSet data descriptors. Finally, 
the second-stage SED model as shown in the lower arm of Fig. 1 
is retrained using both the entire DCASE challenge data and the 
selected AudioSet data.  

The following subsections explains the network architecture 
of the proposed LKA-CRNN-based SED model, LKA-based at-
tention, and label filtering-based self-learning. 

3.1. Network architecture 

Table 1 displays the network architecture of this proposed model. 
The model comprises one stem block, six FDY–LKA blocks, one 
optional fusion block, and one RNN block. Initially, all input fea-
tures for each audio clip are grouped to form a spectral image of 
dimensions (1001×128×1), which serves as the input to the stem 
block. In detail, the stem block consists of one convolutional 
block with 32 kernels of size (3×3) and a stride of (1×1), which is 
further processed by batch normalization (BN), gated linear unit 
(GLU) activation, and a 2×2 average pooling layer. Note that 
(x×y×z) and (x×y) indicate (frame×frequency×channel) and 
(frame×channel), respectively.  

Next, the output from the stem block is processed by the first 
FDY–LKA block. This block is made up of FDY, LKA, BN, GLU, 
and an average pooling layer, as indicated in the table. The output 
of each FDY–LKA block is then passed to the next FDY–LKA 
block. Consequently, the output from the last FDY–LKA block, 
which is also the output of FDY–LKA-CNN, becomes a feature 
map with a dimension of (250×1×256). 

In the fusion block, we optionally use the bidirectional en-
coder representation from audio transformers (BEATs) encoder 
[15] which is pretrained with AudioSet. The BEATs encoder ex-

 

Figure 1: Illustration of the training procedure for the proposed 
FDY–LKA-CRNN-based SED model, including a label filtering-
based self-learning strategy. 
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tracts the embedding corresponding to high-level semantic infor-
mation. To align the dimensions between the output of the FDY–
LKA-CNN and the BEATs embedding, we employ either average 
pooling or nearest neighbor interpolation. This results in four dis-
tinct models, constructed by applying one of these methods at the 
first or second stage for model diversity. The aligned BEATs em-
bedding is then concatenated with the output of the FDY–LKA-
CNN, followed by a fully connected (FC) layer to produce a fea-
ture map with a dimension of (250×256). 

Finally, this feature map is processed by the RNN block, 
which comprises two bidirectional gated recurrent units (Bi-
GRUs) designed to learn temporal context information. To per-
form SED, the output from the RNN block is processed by an FC 
layer and then a sigmoid function, generating an output with a di-
mension of (250×10), where 10 indicates the number of sound 
events to be detected. 

The following subsection provides detailed explanations of 
our contributions, such as the LKA-based attention and label-fil-
tering-based self-learning strategy, which are two key factors in 
achieving state-of-the-art SED performance.  

3.2. LKA-based attention 

The FDY, in each FDY–LKA block, is designed to capture the 
specific frequency characteristics associated with each event class 
category in the DCASE challenge. However, it is not enough to 

only use FDY; we also need to represent the long-term depend-
ency of audio signals. Audio signals are inherently non-stationary, 
which means that we need to apply LKA-based attention, as illus-
trated in the FDY–LKA block in Table 1. Originally, LKA was 
proposed for image classification and detection tasks [7] to assign 
attention to a pixel by considering its adjacent pixels. In this paper, 
we interpret the spectrogram of an audio event sound as an image. 
Therefore, the attention for a specific time-frequency bin should 
be assigned by taking into account its adjacent time-frequency 
bins or bands. 

The LKA attention mechanism comprises three distinct con-
volution layers: a depth-wise convolution layer, a depth-wise di-
lation convolution layer, and a (1x1) convolutional layer. The 
depth-wise convolution layer utilizes the local time-frequency in-
formation derived from the feature map procured by FDY. Fol-
lowing this, the depth-wise dilation convolution layer extracts es-
sential long-range time-frequency band information. The final 
convolutional layer focuses on a channel that represents audio 
events as the functionality of the attention mechanism. 

3.3. Label filtering-based self-learning 

We propose a label filtering method to address the scarcity of 
strongly labeled data provided by the DCASE challenge. First, we 
prepare the data for label filtering, which includes 1) all the weakly 
labeled and unlabeled data from the DCASE dataset, and 2) a seg-
ment of AudioSet data that corresponds to one of the DCASE au-
dio classes. We then use the first-stage SED model to infer these 
data and obtain the class prediction probabilities. 

Next, we generate a strong pseudo-label, 𝑙!", of the c-th class 
at the F-th frame for a given audio data using the following equa-
tion:  
 

𝑙!" 	= 	 $
1,		if		(𝑝𝐶

𝐹		>	α)	and	(𝑝# 	>	β)				
0,		otherwise,																														

for all c       (1) 

 
where 𝑝!"  represents the probability of the c-th class at the F-th 
frame of the audio signal for the strong pseudo-label, and 𝑝! rep-
resents the probability of the c-th class for the weak pseudo-label. 
If 𝑝!"  and 𝑝!  exceed the given thresholds, α and β, respectively, 
then the strong pseudo-label is assigned as class c. If (1) is not met, 
the audio data is discarded. Note that we set α and β to 0.5 and 0.7, 
respectively, from the exhaustive search. 

After completing the label filtering process, all audio data 
with strong pseudo-labels are utilized as the second-stage training 
data. Here, the strongly labeled data from the DCASE dataset is 
also incorporated in the second stage. 

4. PERFORMANCE EVALUATION 

4.1. Model training 

In the first training stage, the FDY–LKA-CRNN-based SED 
model parameters were initialized using the Xavier initialization 
[16]. The Adam optimization technique [17] was employed with 
a dropout rate [18] of 0.5. The learning rate was determined ac-
cording to the ramp-up strategy [19], with the maximum learning 
rate reaching 0.001 after 50 epochs. Various augmentation tech-
niques were applied to the training data, including time-frequency 
shift [20], time mask [21], mix-up [22], and filter augmentation 

Table 1. Network architecture of the proposed FDY–LKA-
CRNN-based SED model, where the Fusion Block is optionally 
performed when BEATs embedding is applied. 

Name Layers Output shape 
Input Layer Input: log-mel spectrogram 1001×128×1 

Stem Block 3x3, Conv2D, @32 GLU, BN 
2x2 average pooling layer 500×64×32 

FDY–LKA 
Blocks 

:
FDY(K=4), @64, GLU, BN 

LKA
2x2 average pooling layer

; 250×32×64 

:
FDY(K=4), @128, GLU, BN 

LKA
1x2 average pooling layer

; 250×16×128 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×8×256 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×4×256 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×2×256 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×1×256 

Fusion Block 
(optional) 

Average pooling or interpolation 
on BEATs embedding 250×768 

Channel-wise Concatenation 
!Output of FDY–LKA blocks (250×256)

BEATs embedding (250×768) "  250×1024  

Fully connected layer  
(1024×256) 250×256 

RNN Block ( 256 Bi-GRU cells ) x 2 250×512 
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[23]. In the second stage, all training hyperparameters were set 
identically to those in the first stage. 

4.2. Experimental results 

The performance of the proposed SED model was evaluated using 
the measures defined in the DCASE 2023 Challenge Task 4A [24]: 
an event-based F1-score and PSDSs. Table 2 compares the per-
formance between the baseline and various versions of the pro-
posed SED models on the validation and evaluation datasets of 
the DCASE 2023 Challenge Task 4A. The performance on the 
validation dataset was drawn from the results released by DCASE 
2023 Challenge Task 4A [25]. Note that there are blanks in the 
performance on the evaluation dataset for the first-stage SED 
model with interpolation since we did not submit this version to 
the DCASE challenge. Additionally, all the numbers in the table 
were averaged over three evaluations for each model, according 
to the DCASE challenge guideline. 

We first compared the performance of our proposed model 
trained in the first stage with the baseline; both models were 
trained with the DCASE 2023 Challenge dataset without BEATs 
embeddings. As shown in the first and fourth rows of the table, 
the proposed FDY–LKA-CRNN-based SED model achieved a 
higher F1-score, PSDS1, and PSDS2 by 17.6%, 0.112, and 0.153, 
respectively, than the baseline. Upon applying BEATs embedding 
in the form of either interpolation or average pooling to the first-
stage SED model, we observed increased F1-score, PSDS1, and 
PSDS2, compared to the first-stage model without BEATs em-
bedding. The superior performance of the first-stage SED model 
over the baseline can be attributed to the contribution of FDY–
LKA to the representation learning for this sound event detection 
task. 

Second, we examined the effectiveness of expanding the 
training data from AudioSet on the SED performance. From the 
second and eighth rows in the table, it is clear that the addition of 
AudioSet data via the proposed label filtering significantly im-
proved the SED performance. Specifically, the second-stage SED 
model with average pooling provided higher F1-score, PSDS1, 
and PSDS2 by 6.2%, 0.055, and 0.021, respectively, than the 
baseline with average pooling. Moreover, the second-stage SED 

model outperformed the first-stage SED model, indicating that la-
bel filtering is an efficient method for expanding training data. 

Next, we constructed an ensemble model by combining 24 
different models from each of the first- and second-stage SED 
models, which were taken according to different training epochs. 
This ensemble outperformed the baseline and individual stage 
models, due to inherent benefits of ensemble modeling such as 
reducing overfitting and improving model robustness. 

Lastly, we compared our results with those of the Wenxin-
TJU system [26] that was ranked the third place in the single 
model system track of DCASE 2023 Challenge Task 4A. As 
shown in the third and eighth rows of the table, the second stage 
of the proposed FDY–LKA-CRNN model provided higher 
PSDS1 for both the validation and evaluation dataset than Wen-
xin-TJU system, while two models had similar PSDS2.   

5. CONCLUSION 

We proposed an FDY–LKA-CRNN-based SED model with 
BEATs embedding for sound event detection. To achieve state-of-
the-art performance in the DCASE 2023 Challenge Task 4A, we 
integrated the LKA-based attention to capture long-term depend-
ency within the convolutional architecture. Additionally, we pro-
posed a label filtering approach to select data from another public 
domain dataset—AudioSet. Accordingly, we developed a two-
stage model training approach; the first-stage model was trained 
using DCASE 2023 Challenge data, while the second-stage model 
was trained using both DCASE 2023 Challenge data and selected 
AudioSet data. Finally, we constructed several versions of SED 
models based on the first- or second-stage training and their en-
semble, which included models constructed by BEATs embedding 
using two different methods—interpolation and average pooling.  

Various versions of the proposed FDY–LKA-CRNN-based 
SED models were evaluated on the validation dataset for DCASE 
2023 Task 4A, and their performance was compared with the base-
line. The results revealed that the proposed second-stage SED 
model, featuring LKA-based attention and label filtering-based 
data selection, significantly improved the SED performance com-
pared to the baseline and the first-stage SED models. Moreover, 
an ensemble model consisting of the first- and second-stage mod-
els outperformed other versions of the proposed models.  

Table 2: Performance comparison of the baseline and different versions of the proposed SED models on the validation and evaluation 
dataset of the DCASE 2023 Challenge Task 4A. 

Model AudioSet BEATs 
embedding Ensemble Validation dataset  Evaluation dataset 

F1-score (%) PSDS1 PSDS2  F1-score (%) PSDS1 PSDS2 

Baseline [25] 
- - - 40.7 0.359 0.562  37.7 0.327 0.538 

Ö Average 
pooling - 57.6 0.491 0.787  56.7 0.510 0.798 

Wenxin-TJU [26] Ö Ö - - 0.512 0.808  58.2 0.546 0.831 

FDY–LKA-
CRNN  

(Stage 1) 

- - - 58.3 0.471 0.715  54.5 0.459 0.701 
- Interpolation - 63.3 0.527 0.782  - - - 

- Average 
pooling - 62.9 0.525 0.776  61.2 0.576 0.809 

FDY–LKA-
CRNN 

(Stage 2) 

Ö Interpolation - 63.4 0.543 0.806  63.8 0.581 0.835 

Ö Average 
pooling - 63.8 0.546 0.808  64.6 0.591 0.831 

FDY–LKA-
CRNN 

(Stages 1 & 2) 
Ö Both Ö 65.6 0.567 0.815 

 
65.5 0.611 0.846  
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