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ABSTRACT

Automated audio captioning is a task of generating descriptions cor-
responding to audio clips. The training process of AAC typically
consists of a pre-training, fine-tuning, and reinforcement learning.
While reinforcement learning enhances the evaluation metrics for
captions, it has the drawback of potentially lowering the quality of
the captions, such as incomplete sentence or repetitive words. In
this study, we propose an ensemble selection technique that com-
bines models before and after reinforcement learning to improve
evaluation metrics while maintaining caption quality. Furthermore,
we apply several data augmentation techniques to complement the
characteristics of WavCaps, which predominantly consists of sin-
gle events, and improve generalization property. In particular, pro-
posed approaches can reach impressive scores both an existing met-
ric SPIDEr , and a new fluency metric SPIDEr-FL, 0.344 and 0.315,
respectively. This resulted in a 2nd place ranking in DCASE 2023
task 6a, while the baseline system achieved SPIDEr of 0.271 and
SPIDEr-FL of 0.264.

Index Terms— Automated audio captioning, pre-training, data
augmentaion, reinforcement learning

1. INTRODUCTION

Automated audio captioning (AAC) is an audio-to-text generation
task that first introduced by K. Drossos et al. [1]. It is an multi-
modal task combines audio processing and natural language pro-
cessing to describe audio clips using natural language. Unlike
sound event detection [2] and audio classification tasks [3], AAC
aims to capture spatio-temporal relationships in audio clips and per-
form advanced interpretation of audio. The detection and classifi-
cation of acoustic scenes and events (DCASE) challenge has played
a significant role in promoting research on AAC, particularly with
the use of audio-caption pair datasets like Clotho [4] and AudioCaps
[5].

During the initial development of AAC models, recurrent neu-
ral network (RNN)-based approaches [1, 6, 7] were commonly pro-
posed. Moreover, as attention-mechanism language models [8] with
superior performance emerged, transformer-based models gained
significant popularity. Various transformer-based architectures, in-
cluding convolution neural network (CNN)-transformer [9, 10],
transformer [11], and CNN-RNN-transformer [12] with encoder-
decoder structures, were widely adopted. These models establish a
crucial connection between audio and transformer-based language
models. CNN-based encoders have particularly demonstrated out-
standing performance in audio representation as audio feature ex-
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tractors. This combination of transformers and CNN-based en-
coders has significantly advanced the field of AAC.

In this study, we employ a bidirectional auto-regressive trans-
former (BART) [13] based CNN-BART model. In addition, we used
data augmentation techniques such as SpecAugment [14], PairMix
[15], and synonym substitution in the pre-training and fine-tuning
process to enhance the generalization characteristics of the model
and complement the characteristics of the dataset. SpecAugment is
a widely used technique that applies random transformations to the
log mel-spectrogram of the audio input, thereby enhancing robust-
ness and generalization. PairMix is a multimodal data augmentation
technique that mixes two audio clips and captions. The WavCaps
[16] we used in the pre-training process mostly consisted of single
event audio clips; therefore, model could not be sufficiently train-
ing about the spatial-temporal features. To address these issues, we
used PairMix in the pre-training phase. Additionally, to enhance the
model’s universality and prevent overfitting during fine-tuning, we
conducted synonym substitution, which entailed replacing random
words with their synonym within the caption.

Reinforcement learning (RL) was adopted to futher enhance the
model’s performance. Specifically, we utilized RL based on self-
critical sequence training, which has been proposed as a supplemen-
tary method to directly improve evaluation metrics. Throughout the
RL process, we monitored the CIDEr [17] score, resulting in sig-
nificant improvements in SPIDEr . However, it is worth noting that
RL models often generate captions of lower quality, such as incom-
plete sentences or repetitive words, as their primary objective is to
improve the CIDEr score. In this study, we proposed an ensemble
selection technique that can maintain the advantages of RL while
enhancing caption quality. By combining models trained without
RL and models trained with RL, we observed improvements in both
SPIDEr and SPIDEr-FL scores compared to using the pre-trained
model alone. Also, the proposed method showed higher perfor-
mance than the existing models in terms of SPIDEr and SPIDEr-
FL.

2. RELATED WORKS

AAC task employs various data augmentation techniques to en-
hance model performance and improve generalization capabilities.
These techniques include SpecAugment, mix up, time stretching,
white noise injection, and more. Among them, SpecAugment is
widely used as a key data augmentation technique in AAC. It in-
volves transforming spectrogram data in the frequency domain to
increase data diversity. Frequency domain transformations can be
performed in various ways, such as time masking, where a portion
of the time axis is masked or duplicated, and frequency masking,
where certain frequency ranges are masked. These transformations
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Figure 1: The flow of overall system. Synonym and RL refer synonym substitution and reinforcement learning.

allow the model to learn from a wider range of frequency patterns
and enhance its robustness to noise and environmental changes,
thereby improving both performance and generalization abilities.
SpecAugment is recognized as a vital component of data augmen-
tation and is widely adopted in research and applications. By utiliz-
ing this technique, AAC models can effectively operate in various
environments and noise conditions. Additionally, mix up [18] is a
technique where two audio samples are linearly combined to create
a new sample. This allows the model to learn features from different
audio sources and diversify the training data. PairMix linearly com-
bines two captions to generate a new caption, which helps improve
the model’s learning by creating diverse combinations of sentence
structures and content.

Captioning models are usually trained using cross-entropy loss.
However, it should be noted that minimizing the loss function does
not always improve the evaluation metric. To address these chal-
lenges, we employ a technique called self-critical sequence training
[19]. This approach allows us to optimize the evaluation metrics
directly, leading to improved scores in terms of these metrics. The
model generates captions, and rewards are computed based on the
metrics (such as SPICE [20], BLEU, CIDEr) between the gener-
ated captions and the ground truth captions. The model is trained to
maximize these rewards, aiming to generate superior captions.

3. METHODS

3.1. Data augmentation

3.1.1. PairMix

PairMix is an efficient and straightforward multimodal data aug-
mentation technique in AAC task. It is first introduced in image
captioning field named MixGen [21]. PairMix combines two audio
clips and concatenates their corresponding captions. The formula
for this process can be represented as follows:

â =

N∑
i=1

λiai, (1)

t̂ = Concat(tNi=1), (2)

where a, t, â, and t̂ represent the audio waveform, caption, aug-
mented audio, and augmented caption, respectively. λi ∈ [0, 1]

for i = 1, 2, ..., N is a hyperparameter that controls the degree of
mixing.

Although data augmentation in the multimodal domain often
poses challenges, PairMix provides an uncomplicated solution for
audio-text datasets. By merging two audio clips, the model trained
using PairMix data augmentation can extract multiple simultaneous
sound events. This capability is crucial in AAC because detecting
multiple sound events significantly improves the accuracy of the re-
sulting captions. Simultaneously, the concatenation of two captions
provides the model with the potential to generate more detailed and
extended descriptions of audio clips. Hence, PairMix effectively
enhances both audio feature extraction of detecting multiple sound
events and caption quality of generating longer, specific descrip-
tions.

3.1.2. Synonym substitution

Synonym substitution is a simple but effective data augmentation
technique [22] derived from WordNet-based synonym substitution.
This method entails substituting certain words in a sentence with
their synonyms, thus allowing the model to express audio clips us-
ing rich vocabulary. During the fine-tuning process, we select in-
dividual words from the target captions, particularly nouns, and
replaced them with their synonyms at random. This strategy can
improve the generalization property of the model and the semantic
properties of generated captions by ensuring that a single audio clip
does not correspond to a single caption, but to various captions with
the same meaning.

3.2. Audio feature extractor

In our model, we employ a 14-layer CNN derived from the pre-
trained audio neural networks (PANNs) [23] architecture for the
extraction of audio features. The choice of PANNs as an audio
feature extractor through transfer learning is both rational and ef-
fective, given its pre-training on an audio tagging dataset. Au-
dio tagging involves a multi-label classification task, necessitating
the model to identify overlapping events occurring simultaneously
within an audio clip. This requirement aligns well with the AAC
task, which also needs to discern overlapping sound events. This
particular CNN architecture is acknowledged for its great perfor-
mance in capturing audio representations. It comprises six convo-
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lutional blocks, each containing two CNN layers with a kernel size
of 3 × 3. Following each CNN layer, batch normalization [24] is
used to standardize the inputs, and a rectified linear unit (ReLU)
activation function [25] is incorporated to enhance performance.

3.3. Language model

We incorporated BART as our language model, motivated by its im-
pressive track record in text generation tasks. BART comprises an
encoder and a decoder, each constructed from 12 transformer lay-
ers. The BART encoder receives the audio features produced by
the audio feature extractor. In contrast, the BART decoder ingests
both the output of the BART encoder and the reference caption. An
attention mechanism is employed between the BART encoder and
decoder, facilitating the model in capturing the semantic nuances
and contextual information within the input sentence. Within each
transformer block of the decoder, self-attention is applied to model
the interactions among all the words in the input sentence. This
strategy enables the model to generate precise predictions for the
subsequent word, leading to high-quality text generation. The ap-
plication of self-attention aids the model in capturing long-range
dependencies and complex contextual relationships between words.

3.4. Ensemble selection

When choosing models for an ensemble, the conventional approach
is to select those that perform well on particular evaluation metric.
In the context of AAC, one of CIDEr or SPIDEr-FL is often con-
sidered when forming ensemble combinations. However, this can
lead to an imbalance, where one metric’s increses while the other
remains unchanged or decrease. This situation is particularly evi-
dent when there’s a large difference between CIDEr and SPIDEr-
FL scores, often occurring when the model is trained using RL. The
RL method, SCST, specifically targets the CIDEr evaluation met-
ric score. While this approach elevates the CIDEr score, it tends
to lower the SPIDEr-FL score. In order to simultaneously boost
both scores, we strategically select the models for the ensemble.
Some of these models are already trained using RL, while others are
not. Given that CIDEr score can be elevated sufficiently due to RL,
we exclude models achieve low scores on SPIDEr-FL for attaining
greater scores of it. This method aims to ensure high performance
on both the CIDEr and SPIDEr-FL metrics. We will describe about
the metrics in subsection 4.4.

4. EXPERIMENTS

4.1. Training

Our learning process consists of three stages: pre-training, fine-
tuning and ensemble selection. During the pre-training phase, we
employed the WavCaps, AudioCaps, and Clotho datasets to train
the model, integrating the PairMix augmentation technique. Subse-
quently, in the fine-tuning phase, we froze the audio feature extrac-
tor and fine-tuned the model using the Clotho dataset via various
methods. Some of the experiments utilized data augmentation tech-
niques, while others did not. Similarly, a subset of the models was
fine-tuned using a RL approach, while others were not. In the final
phase, we created several combinations of the outcomes from the
fine-tuning step to form an ensemble. Fig. 1 shows the overview of
our proposed methods.

4.2. Dataset

4.2.1. WavCaps

The WavCaps dataset1 is a large-scale, weakly-labelled audio cap-
tioning dataset, encompassing approximately 400,000 audio clips
paired with captions. This dataset is including BBC Sound Effects,
FreeSound [26], SoundBible and AudioSet [27]. To reduce the
challenges associated with noisy and unsuitable raw descriptions,
a three-stage processing pipeline leveraging ChatGPT is employed.
The average duration of the audio clips is 67.59 seconds, and cap-
tions primarily consist of single-event descriptions, with an average
caption length of 7.8 tokens. However, due to the unavailability of
some data from FreeSound, we focused exclusively on the publicly
accessible data for our research.

4.2.2. AudioCaps

AudioCaps is a dataset composed of 46,000 audio clips, each 10
seconds in duration and paired with text descriptions. The dataset
is divided into three subsets: development-training, development-
validation, and development-testing, which contain 38,118, 500,
and 979 audio clips, respectively. While the training set provides
a single caption per audio clip, the validation and testing sets offer
five captions for each clip.

4.2.3. Clotho

Clotho v2.1 is divided into three subsets within its published
development sets: development-training, development-validation,
and development-testing. The development-training subset com-
prises 3,839 audio clips, and the development-validation and
development-testing subsets each consist of 1,045 audio clips. All
audio files in this dataset fall within a duration of 15 to 30 sec-
onds. For each audio clip, there are five accompanying captions,
each ranging from 8 to 20 words in length.

4.3. Experiment setup

The proposed model was trained using Adam [28] optimizer with
batch size of 16 in both pre-training and fine-tuning phases. In pre-
training phase, the learning rate was fixed to 1× 10−6, and in fine-
tuning phases, we used two different learning rates of 5×10−5 and
1 × 10−6. We adopted PairMix technique during pre-training pro-
cess and we set λ = 0.5 and N = 2 in Eq. (1) and Eq. (2). With
regard to synonym substitution, we randomly selected 8 captions
in mini batch and substituted one nouns to another similar mean-
ing nouns. In terms of ensemble selection, we selected models as
following rules. First, exclude two models attaining the lowest and
second lowest scores on SPIDEr (PairMix 1, PairMix 2) and also
SPIDEr-FL (PairMix+RL 1, PairMix+S·S+RL), respectively. Sec-
ond, exclude two models attaining the lowest scores on SPIDEr and
SPIDEr-FL (PairMix 1, PairMix+RL 1). Finally, exclude none of
them.

4.4. Evaluation metrics

We evaluated the models trained by our methods through one ma-
chine translation metric, METEOR [29], and four captioning met-
rics. CIDEr , SPICE, SPIDEr and SPIDEr-FL are those. ME-
TEOR assesses translation quality through exact word matches,

1https://github.com/XinhaoMei/WavCaps
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Model METEOR CIDEr SPICE SPIDEr SPIDEr-FL

PairMix 1 0.179 0.458 0.125 0.291 0.290
PairMix 2 0.183 0.468 0.130 0.299 0.295

PairMix+S·S 1 0.182 0.473 0.129 0.301 0.298
PairMix+S·S 2 0.188 0.483 0.137 0.310 0.306
PairMix+RL 1 0.192 0.505 0.135 0.320 0.154
PairMix+RL 2 0.193 0.518 0.142 0.330 0.227

PairMix+S·S+RL 0.195 0.526 0.143 0.335 0.226

Table 1: Performances of each data augmentation techniques and
RL on Clotho evaluation split. For all metrics, higher values in-
dicate better performance. S·S refers synonym substitution. The
difference between the number of models is the learning rate. Mod-
els possessing number 1 in their names are trained with learning
rate of 5× 10−5 and the others are 1× 10−6.

stem matches, synonym matches and phrase matches. Then it com-
putes the harmonic mean of precision and recall according those
matches. CIDEr measures weighted sum of cosine similarity be-
tween predicted and reference captions by term frequency and in-
verse document frequency so that it shows how created caption is
well related to audio clip. SPICE metric calculates F-score using
semantic scene graphs in sense of words relations in the captions.
This means SPICE score can indicate model ability to generate se-
mantically correct captions. SPIDEr is the average of CIDEr score
and SPICE score, which is able to estimate the balance between two
metrics. SPIDEr-FL is an evaluation metrics that includes the flu-
ency of captions. It is calculated by dividing the SPIDEr score by
10 for each individual example with an error.

5. RESULTS

The results of data augmentation techniques and RL on Clotho test
set are shown in Table 1. We observed synonym substitution slightly
enhances both SPIDEr and SPIDEr-FL scores. Additionally, we
compared the models trained with RL and those that are not. The
models trained with RL were scoring higher values of SPIDEr than
those models without, however, one of the captions of the highest
SPIDEr score model was ‘a fishing line is being wound up and a
keys in’ which was not fluent enough since the sentence was not ter-
minated. This results in the SPIDEr-FL scores were significantly
lower than the models not trained with RL. As a result, the model
trained with PairMix and synonym substitution with learning rate
1 × 10−6 appeared the highest score of SPIDEr-FL. Meanwhile,
the model trained with PairMix, synonym substitution and RL was
seem to be the top SPIDEr score model. In the context of en-
semble selection, we analyzed the relations of ensembles with and
without RL. The ensemble model excluding the RL scored similar
in both SPIDEr and SPIDEr-FL metrics with the top SPIDEr-FL
single model. However, when at least one model trained through
RL was included in the ensemble, there was a notable increase
in SPIDEr scores. Furthermore, for SPIDEr-FL, some of these
models achieved higher scores compared to ensembles without RL.
Especially ensemble 3 model was achieving the highest score on
SPIDEr-FL metric. We also observed the caption improvement like
following with the same audio clip we stated above: ‘a fishing reel
is being wound up and a bell is ringing’. This caption is clearly
more fluent. From Fig. 2, we noticed 4:1 ratio of non-RL models
and RL models was performing the best. The model combination
of each ensemble model is described below.

Model METEOR CIDEr SPICE SPIDEr SPIDEr-FL # of model

Ensemble 1 0.185 0.485 0.132 0.308 0.305 4
Ensemble 2 0.196 0.537 0.144 0.341 0.256 5
Ensemble 3 0.195 0.539 0.144 0.341 0.332 5
Ensemble 4 0.195 0.529 0.144 0.336 0.279 5
Ensemble 5 0.196 0.543 0.146 0.345 0.277 6
Ensemble 6 0.195 0.535 0.145 0.340 0.311 6
Ensemble 7 0.196 0.542 0.147 0.344 0.298 7

Table 2: Results of ensemble selection.

Figure 2: Ensemble SPIDEr-FL scores according to ratio of non-
RL and RL models. The legend shows the ratio according to colors.

• Ensemble 1: 4 models trained without RL.
• Ensemble 2: Top 5 SPIDEr models.
• Ensemble 3: Top 5 SPIDEr-FL models.
• Ensemble 4: Excluding the lowest SPIDEr model and

SPIDEr-FL model.
• Ensemble 5: Top 6 SPIDEr models.
• Ensemble 6: Top 6 SPIDEr-FL models.
• Ensemble 7: All 7 models.

6. CONCLUSION

In this study, we presented data augmentation, RL, and ensemble se-
lection to boost both evaluation metrics, SPIDEr and SPIDEr-FL.
PairMix successfully rose the performance during the pre-training
phase. This was considered the result of PairMix effect of devel-
oping the ability to detect multiple sound events at the same time
stamps. Synonym substitution, likewise, elevated the model capa-
bility to express in various vocabulary. In terms of RL, it only con-
centrated on increasing the value of metric score, the actual fluency
of captions decrease. This led to conclude removing RL models for
ensemble was reasonable choice, however, those ensemble models
including RL models were showing better performance when they
were evaluated with both SPIDEr and SPIDEr-FL. The chosen RL
models played a role of regularization on ensemble, leading to gen-
erate well-related and more fluent captions.
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