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ABSTRACT
In recent years, datasets of paired audio and captions have en-
abled remarkable success in automatically generating descriptions
for audio clips, namely Automated Audio Captioning (AAC). How-
ever, it is labor-intensive and time-consuming to collect a suffi-
cient number of paired audio and captions. Motivated by the re-
cent advances in Contrastive Language-Audio Pretraining (CLAP),
we propose a weakly-supervised approach to train an AAC model
assuming only text data and a pre-trained CLAP model, alleviat-
ing the need for paired target data. Our approach leverages the
similarity between audio and text embeddings in CLAP. During
training, we learn to reconstruct the text from the CLAP text em-
bedding, and during inference, we decode using the audio embed-
dings. To mitigate the modality gap between the audio and text
embeddings we employ strategies to bridge the gap during training
and inference stages. We evaluate our proposed method on Clotho
and AudioCaps datasets demonstrating its ability to achieve a rel-
ative performance of up to 83% compared to fully supervised ap-
proaches trained with paired target data. 1 Our code is available at:
https://github.com/zelaki/wsac

Index Terms— Automated audio captioning, multi-modal
learning, contrastive learning.

1. INTRODUCTION

Audio-Language tasks have recently gained the attention of the au-
dio community with the introduction of Automated Audio Caption-
ing and Language-Based Audio Retrieval in the DCASE Challenge
and the release of publicly available Audio-Language datasets such
as Clotho [1] and AudioCaps [2]. The intrinsic relationship between
Audio and Language presents an opportunity for the development
of models that can effectively establish a shared semantic space for
the two modalities. Such an approach has recently achieved great
success with models like COALA [3], AudioClip [4], and CLAP
[5, 6, 7]. These models use parallel audio-text data to train a joint
representation, where the embeddings of audio-text pairs are simi-
lar. Such models achieve high accuracy in a zero-shot setting in a
variety of tasks including Sound Event Classification, Music tasks,
and Speech-related tasks [5].

Automated Audio Captioning (AAC) is a multimodal task that
aims to generate textual descriptions for a given audio clip. In or-
der to generate meaningful descriptions, a method needs to capture
the sound events present in an audio clip and generate a descrip-
tion in natural language. Training audio captioning models requires

1This work was conducted in the framework of the PREMIERE project
(No. 101061303) that is funded by the European Union.

large datasets of audio-caption pairs, and these are challenging to
collect. While great effort has been done, the data scarcity issue
of audio captioning still withholds. The common datasets in AAC,
AudioCaps and Clotho, contain together 50k captions for training,
whereas 400k captions are provided in COCO caption [8] for image
captioning. Kim et al. [9] observe that due to the limited data, prior
arts design decoders with shallow layers that fail to learn general-
ized language expressivity and are fitted to the small-scaled target
dataset. Due to this issue, their performance radically decreases
when tested on out-of-domain data. Motivated by these limitations
we present an approach to AAC that only requires a pre-trained
CLAP model and unpaired captions from a target domain. This
alleviates the need for paired audio-text data, and also allows for
simple and efficient domain adaptation.

Our approach is inspired by recent advances in zero-shot im-
age captioning [10, 11], that leverage the aligned multi-modal la-
tent space provided by CLIP [12] obviating the need for image data
during training and by the recent success of Contrastive Language-
Audio models such as CLAP [5] in many downstream tasks. We
train a lightweight decoder model to reconstruct texts from their re-
spective CLAP embeddings, and at inference use this decoder to
decode the audio embeddings. Our findings align with prior studies
in image captioning suggesting that such an approach is suboptimal
due to the presence of a phenomenon known as modality gap [13].

The modality gap suggests that embeddings from different data
modalities are located in two completely separate regions of the em-
bedding space of multi-modal contrastive models [13]. To mitigate
this issue we employ strategies that have been shown to effectively
condense the gap in CLIP embeddings [10, 11] and show that they
can be effectively utilized for CLAP models. These strategies can
be divided into two categories, strategies that condense the gap dur-
ing training and during inference.

Experiments on Clotho and AudioCaps datasets show that our
weakly-supervised approach can achieve comparable performance
to prior fully supervised arts, without requiring any target audio data
during training. Our contributions can be summarized as follows:
(1) We propose WSAC: Weakly-Supervised Audio Captioning an
AAC approach that requires no auditory in-domain data for training,
(2) we demonstrate that the modality gap phenomenon is present in
CLAP models, and (3) employ methods that effectively mitigate it.

2. TEXT-ONLY TRAINING

Our goal is to learn a model that produces a caption for a given
audio clip. Unlike fully supervised approaches, during training we
only assume that we have access to a set of target domain captions
C. We further assume a pre-trained CLAP model with an audio en-
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Figure 1: Overview of our proposed approach. Left: An illustration of the CLAP training paradigm. The encoders are trained to map
semantically similar audio-caption pairs to similar embeddings in a joint representation space. Middle: Our proposed weakly supervised
training. A frozen CLAP text encoder embeds a caption and a decoder learns to reconstruct the caption from its embedding. Right: At
inference, we decode the audio embedding extracted from a frozen CLAP audio encoder, using the trained decoder.
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coder Aclap and a text encoder Tclap trained to project semantically
similar audio-text pairs into similar embeddings in a shared embed-
ding space as presented in Fig. 1 (Left). Given an audio clip xa and
text xt let za = Aclap(xa) ∈ Rd and zt = Tclap(xt) ∈ Rd be
their embeddings.

First we extract text embeddings zt for all xt ∈ C, keeping
Tclap frozen. During training, our goal is to learn a network that
inverts the CLAP text encoder Tclap. We use a textual decoder
D consisting of a mapping network f and an auto-regressive lan-
guage model, to reconstruct the original text xt from the CLAP
text embedding zt. Following recent work [9], we train our de-
coder using the prefix language modeling paradigm. Specifically,
after passing the text embedding through the mapping network f
we regard p = f(zt) as a prefix to the caption. Given a text
t = {w1, w2, ..., wT }, our objective is to minimize the autoregres-
sive cross-entropy loss:

L = −
T∑

i=1

logD(wi|w<i,p) (1)

Since the CLAP text embedding is optimized to be similar to
the CLAP audio embedding, we can directly infer the text decoder
using the audio embeddings za without any pairwise training on
the target dataset. The training and inference stages are presented
in Fig. 1 (middle) and (right) respectively.

3. STRADEGIES TO BRIDGE THE MODALITY GAP

Directly employing the audio embeddings to infer D is not optimal
due to the presence of the modality gap. Fig. 2 is a visualization of
generated embeddings from the pre-trained CLAP model from the
Clotho training set. Paired inputs are fed into the pre-trained model
and the embeddings are visualized in 2D using T-SNE [14]. This
visualization clearly demonstrates the presence of the modality gap
phenomenon, as a noticeable gap separates the paired audio and
text embeddings. To address this issue, we utilize strategies that
have demonstrated success in bridging the modality gap in CLIP

embedding space [10, 11, 13]. We show that these strategies can
be adopted for CLAP and show their effectiveness in mitigating the
modality gap. These approaches can be divided into two categories:
Bridging the gap either during the training phase or during the in-
ference phase.

3.1. Training strategies

Attempting to reduce the modality gap during training we adopt
the following strategies: (a) Noise injection [10], and Embedding
Shift [13]. These strategies aim to narrow the disparity between
the modality used to train the decoder, which is text, and the target
modality, which is audio.

3.1.1. Noise injection

In [10], the authors show that injecting the text embedding with
Gaussian noise during training has the effect of creating a region
in the embedding space that will map to the same caption. This
method assumes that the corresponding audio embedding is more
likely to be inside this region. Following [10], we add zero-mean
Gaussian noise of standard deviation σ to the text embedding be-
fore feeding it to the decoder. We set σ to the mean Linf norm of
embedding differences between five captions that correspond to the
same audio. Since we assume no access to target audio data we esti-
mate σ using 50 audio-caption pairs from the WavCaps dataset [7].
Thus the prefix in Eq. 1 becomes p = f(zt +n), where n ∈ Rd is
a random standard Gaussian noise with standard deviation σ.

3.1.2. Embedding shift

Building upon the findings of [13], who investigated the impact
of shifting embeddings in various multi-modal contrastive learning
models on downstream tasks, we propose a method to align the text
embeddings with the audio embeddings during training. First, we
define the modality gap following [13], as the difference between
the center of audio embeddings and text embeddings:
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Figure 2: Visualization of audio and text embedding pairs ran-
domly sampled from the Clotho training set. The modality gap phe-
nomenon is present as the audio and text modalities are embedded
in two completely separate regions.

∆gap =
1

n

n∑
i=1

zai −
1

n

n∑
i=1

zti (2)

Then, we shift every text embedding toward closing the modality
gap, and thus the prefix in Eq. 1 becomes p = f(zt +∆gap).

3.2. Inference strategies

At inference, we adopt two training-free strategies proposed in [11],
and map an audio embedding extracted from the CLAP audio en-
coder Aclap into the text embedding space. For both strategies, we
will assume a decoder D trained on some target data as described
in Section 2 and a set of text embeddings obtained from the target
training set that we will refer to as Memory, M = {z1t , z2t , ...zNt },
where N is the size of the training set.

3.2.1. Nearest-neighbor decoding

A straightforward strategy that can be adopted at inference time to
mitigate the modality gap is to use the nearest text embedding as
the prefix, instead of the audio embedding. We calculate the cosine
similarity between the audio embedding za and the text embeddings
in M and decode with the most similar:

p = zi | i = argmax
zt∈M

sim(za, zt) (3)

Where sim(x,y) = x·y
∥x∥·∥y∥ . Since the decoder is trained to recon-

struct the original text conditioned on the text embedding, nearest-
neighbor decoding can be successful if a sufficiently similar text
embedding is present in M.

3.2.2. Projection-based decoding

A better approach is to project the audio embedding into the text
embedding space. This involves obtaining the representation of the
audio embedding, by combining the embeddings in M through a
weighted combination.

p =

|M|∑
i=1

wi ∗ zti (4)

The weights wi for these text embeddings are determined by cal-
culating the cosine similarity between the audio embedding za and
each embedding in M. Following [11] the similarity is then scaled
by a temperature parameter τ and normalized using a softmax func-
tion:

wi =
exp(sim(za, zti)/τ)∑|M|
j=1 exp(sim(za, ztj)/τ)

(5)

4. EXPERIMENS

4.1. Data

We conduct experiments using two benchmarks, AudioCaps and
Clotho. AudioCaps contains 50k, 10-second audio clips sourced
from Audioset [15]. Each audio is annotated with one caption in
the training set and five captions in the evaluation set. Clotho con-
sists of 4981 audio samples of 15 to 30 seconds duration. Each au-
dio is annotated with five captions. We follow the standard recipes
of training, validation, and test splits on each dataset for our ex-
periments. To adhere to a weakly-supervised setting we assume no
access to audio data in the training and validation sets.

4.2. Experimental setup

To extract audio and text embeddings we employ a frozen CLAP
model2 trained on WavCaps [7]. The audio encoder is a CNN14
from Pre-trained Audio Neural Networks (PANNs) [16], and the
text encoder is a BERT-based model [17]. We choose this model
as the embedding extractor because AudioCaps and Clotho datasets
were not included in its training set. This choice is made under the
assumption that target audio data are unavailable for training pur-
poses. The decoder D consists of a mapping network f which is a
2-layered MLP, and the language model which is a 4-layer Trans-
former [18] with 4 attention heads. The size of the hidden state is
768. The decoder D is trained from scratch on the target captions.
The noise variance for Noise Injection training is set to σ2 = 0.013.
We train the proposed model for 30 epochs using Adam optimizer
[19] and a batch size of 64. The learning rate is linearly increased to
2× 10−5 in the first five epochs using warm-up, which is then mul-
tiplied by 0.2 every 10 epochs. We use greedy search for decoding.

4.3. Compared methods and evaluation metrics

Since no previous work has addressed AAC in similar supervi-
sion settings we compare our methods against fully supervised ap-
proaches trained on paired data. Koh et al. [23] use a latent
space similarity objective and train a model with a PANNs encoder
and a transformer decoder. Xu et al. [22] design a GRU for the
decoder. Mei et al. [20] propose a full transformer encoder-
decoder architecture. Gontier et al. [21] utilize a pre-trained
language model based on BART [21], and finetune it for AAC us-
ing guidance from Audioset tags. Kim et al. [9] propose prefix
tuning for AAC learning a prefix to guide the caption generation of
a frozen GPT-2 [24]. Mei et al. [7] utilize a CLAP audio en-
coder pre-trained on WavCaps and a BART decoder achieving state-
of-the-art results in both Clotho and AudioCaps. All the methods in
this work are evaluated by the metrics widely used in the caption-
ing tasks, including BLEU [25], METEOR [26], ROUGE-L [27],
CIDEr [28], SPICE [29], and SPIDEr [30].

2https://github.com/XinhaoMei/WavCaps/tree/master
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Table 1: Results on AudioCaps and Clotho. We report results for fully supervised methods trained on audio-caption pairs, and our proposed
methods trained only on captions. WSAC is our baseline approach presented in Section 2. We refer to Noise injection as NI, Embedding
shift as ES, Nearest-neighborhood decoding as NND and, Projection-based decoding as PD. We highlight the best results for fully and weakly
supervised methods with underline and bold respectively.

Dataset Supervision Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr SPICE SPIDEr

Audiocaps

Audio-Caption
Pairs

Mei et al. [20] 0.647 0.488 0.356 0.252 0.222 0.468 0.679 0.160 0.420
Kim et al. [9] 0.713 0.552 0.421 0.309 0.240 0.503 0.733 0.177 0.455

Gontier et al. [21] 0.699 0.523 0.380 0.266 0.241 0.493 0.753 0.176 0.465
Mei et al. [7] 0.707 - - 0.283 0.250 0.507 0.787 0.182 0.485

Captions
Only

WSAC 0.574 0.398 0.267 0.167 0.222 0.426 0.493 0.155 0.324
WSAC+NI 0.662 0.477 0.328 0.216 0.223 0.46 0.579 0.155 0.367
WSAC+ES 0.653 0.458 0.300 0.185 0.214 0.451 0.540 0.154 0.347
WSAC+NND 0.643 0.457 0.312 0.198 0.231 0.454 0.548 0.166 0.357
WSAC+PD 0.698 0.511 0.357 0.232 0.241 0.479 0.633 0.173 0.403

Clotho

Audio-Caption
Pairs

Xu et al. [22] 0.556 0.363 0.242 0.159 0.169 0.368 0.377 0.115 0.246
Koh et al. [23] 0.551 0.369 0.252 0.168 0.165 0.373 0.380 0.111 0.246
Kim et al. [9] 0.560 0.376 0.253 0.160 0.170 0.378 0.392 0.118 0.255
Mei et al. [7] 0.601 - - 0.180 0.185 0.400 0.488 0.133 0.310

Captions
Only

WSAC 0.462 0.282 0.173 0.102 0.166 0.343 0.265 0.113 0.189
WSAC+NI 0.525 0.314 0.193 0.118 0.164 0.352 0.315 0.113 0.214
WSAC+ES 0.546 0.332 0.203 0.120 0.159 0.353 0.301 0.109 0.205
WSAC+NND 0.498 0.294 0.179 0.106 0.166 0.338 0.332 0.113 0.222
WSAC+PD 0.532 0.324 0.200 0.118 0.174 0.354 0.371 0.123 0.247

4.4. Results and Discussion

In this section, we present the results of our proposed methods on
the performance metrics and compare them with fully supervised
arts. Additionally, we illustrate the effectiveness of each strategy
in reducing the modality gap. As shown in Table 1 our methods
demonstrate comparable performance to prior state-of-the-art mod-
els despite never encountering in-domain audio data during training.
We present the results of our baseline approach described in Section
2 and the results of the baseline approach in conjunction with the
strategies presented in Section 3. It is evident that all the strategies
boost the performance of our baseline approach in both evaluation
sets. Interestingly the inference strategies outperform the training
strategies in most cases. We hypothesize that this is because they
utilize the Memory M which consists of in-domain text embed-
dings in order to bridge the modality gap. Our best-performing
method, namely Projection-based decoding achieves 80% and 83%
of the SPIDEr performance of the current fully supervised state-
of-the model in Clotho and AudioCaps evaluation sets respectively.
Additionally Projection-based decoding matches the performance
of the of fully-supervised approaches proposed by Kim et al. [9].
Koh et al. [23] and Xu et al. [22] in the Clotho evaluation set.
Visualization of embeddings: To further examine the effectiveness
of the proposed strategies we illustrate the embeddings in 2D space
using t-SNE in Fig. 3. In Fig. 3a and 3b we randomly sample au-
dio and text embeddings from the Clotho training set after applying
Noise Injection and Embedding Shift to the text embeddings. Fig.
3c and 3d illustrate randomly selected text embeddings from the
Clotho evaluation set, alongside the embeddings utilized for decod-
ing, namely the nearest neighbors and the projections, rather than
the paired audio embeddings. It is evident that all strategies are ef-
fective in condensing the modality gap showcased in Fig. 2, where
the audio and text modalities are embedded at arm’s length in their
shared representation space.

5. CONCLUSION AND FEATURE WORK

In this work, we propose a weakly-supervised approach for Auto-
mated Audio Captioning that requires a pre-trained CLAP model
and only additional text data to train on a target domain. Our method
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Figure 3: TSN-E visualizations of the embedding space after apply-
ing the strategies presented in Section 3.

alleviates the necessity of paired data in a target domain, which are
hard to collect. We demonstrate that by leveraging the shared em-
bedding space of CLAP we can learn to reconstruct the text from the
CLAP text embedding and during inference decode using the audio
embeddings. We show that such an approach is suboptimal due to
the presence of a modality gap and adopt strategies that effectively
mitigate it. Our best-performing method achieves comparable re-
sults to prior arts trained in a fully supervised manner. For future
work, we plan to study the effectiveness of our proposed approach
on other tasks, such as Music Captioning and Audio Question An-
swering. We further aim to train a mapping network to learn the gap
between the two modalities in a supervised manner.
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