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ABSTRACT

Automated Audio Captioning (AAC) aims to develop systems
capable of describing an audio recording using a textual sentence.
In contrast, Audio-Text Retrieval (ATR) systems seek to find the
best matching audio recording(s) for a given textual query (Text-to-
Audio) or vice versa (Audio-to-Text). These tasks require differ-
ent types of systems: AAC employs a sequence-to-sequence model,
while ATR utilizes a ranking model that compares audio and text
representations within a shared projection subspace. However, this
work investigates the relationship between AAC and ATR by ex-
ploring the ATR capabilities of an unmodified AAC system, without
fine-tuning for the new task. Our AAC system consists of an audio
encoder (ConvNeXt-Tiny) trained on AudioSet for audio tagging,
and a transformer decoder responsible for generating sentences. For
AAC, it achieves a high SPIDEr-FL score of 0.298 on Clotho and
0.472 on AudioCaps on average. For ATR, we propose using the
standard Cross-Entropy loss values obtained for any audio/caption
pair. Experimental results on the Clotho and AudioCaps datasets
demonstrate decent recall values using this simple approach. For
instance, we obtained a Text-to-Audio R@1 value of 0.382 for Au-
dioCaps, which is above the current state-of-the-art method without
external data. Interestingly, we observe that normalizing the loss
values was necessary for Audio-to-Text retrieval.

Index Terms— Automated audio captioning, audio-text re-
trieval, ConvNeXt, DCASE Workshop

1. INTRODUCTION

In recent years, audio-language tasks have received greater atten-
tion due to advances in machine learning for text processing. For
example, the Automated Audio Captioning (AAC) task aims to cre-
ate machine learning systems that produce a sentence describing an
audio file, while the Audio-Text Retrieval (ATR) task aims to use a
caption to extract an audio from its database (Text-to-Audio, T2A)
or use an audio to retrieve a caption from its database (Audio-to-
Text, A2T). Research on these tasks is also boosted by the DCASE
Challenge and Workshop1, which proposed two tasks dedicated to
AAC and T2A. Although these tasks appear to be closely related,
they are usually performed by two different systems and architec-
tures. Those systems can sometimes share common weights [1],
but they need to be trained differently on several phases. In the im-
age captioning task, the authors of [2] proposed to use a captioning
system by describing each image and compare these descriptions to
the captions instead of the images. In this paper, we propose an-

1https://dcase.community/

other method for using an AAC system to perform the ATR task,
and we investigate the implications of using this system in this way.

2. SYSTEM DESCRIPTION

2.1. AAC system architecture

To achieve the AAC task, we employ a deep neural network with an
encoder-decoder architecture. We trained a ConvNeXt [3] (CNext)
model for audio tagging and used it as an encoder to produce frame-
level features to overcome the lack of audio-language data. The
ConvNeXt was trained on the AudioSet [4] audio tagging dataset
without the AudioCaps [5] audio captioning dataset files to avoid
biases. This encoder achieves a high mAP score of 0.462 on Au-
dioSet. The details of the architecture and training hyperparame-
ters are given in [6]. The encoder gives a list of features of shape
768 × 31 for a 10-seconds audio clip, which are projected by a
sequence of dropout set to 0.5, dense layer, a ReLU activation and
another dropout set to 0.5. The decoder is a standard transformer de-
coder architecture [7] with six decoder layers blocks, four attention
heads per block, a feedforward dimension of 2048, a GELU [8] acti-
vation function and a global dropout set to 0.2. Unlike a lot of AAC
and ATR systems, no pre-trained weight has been used for the de-
coder/word modelling part. We found that freezing the ConvNeXt
encoder leads to lower variances, so we decided to pre-compute all
its embeddings to train only the decoder part. The whole model
contains 28M frozen parameters and 12M trainable parameters.

2.2. Data augmentation

During our training with the decoders, we added three different aug-
mentations on audio and input word embeddings to reduce overfit-
ting and improve model generalization. Mixup [9] modifies the in-
put audio and word embeddings during training, with α set to 0.4.
Each embedding is mixed with another one in the current batch, ex-
cept for the target, which remains unmixed. Label Smoothing [10]
is applied to the target one-hot vectors to reduce the maximal prob-
ability of each word and limit the confidence of the model. Finally,
SpecAugment [11] masks a part of the audio frame embeddings,
with 6 stripes dropped with a maximal size of 4 in time axis and 2
stripes dropped with a maximal size of 2 in feature axis.

2.3. Using a captioning system for retrieval

The first idea to use an AAC system for ATR is to generate pre-
dictions to describe each audio file and compare each text query to
each description using a metric like BLEU, CIDEr-D or SBERT, as
proposed in [2], but we found low results using this strategy. We

https://dcase.community/
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Table 1: AAC results on Clotho and AudioCaps testing subsets. Our results are averaged over 5 seeds. WC stands for WavCaps [12] dataset.
Best values for each dataset/metric are in bold, and best values without external data are underlined.

Dataset System Train data #params METEOR CIDEr-D SPICE SPIDEr SPIDEr-FL

CL
BEATs+Conformer [13] CL+AC 127M .193 .506 .146 .326 .326
CNN14-trans [14] CL 88M .177 .441 .128 .285 N/A

CNext-trans (ours) CL 40M .189 .464 .136 .300 .298

AC
HTSAT-BART [12] AC+WC 171M .250 .787 .182 .485 N/A

Multi-TTA [15] AC 108M .242 .769 .181 .475 N/A

CNext-trans (ours) AC 40M .246 .763 .183 .473 .472

believe that AAC systems tend to produce less detailed and diversi-
fied sentences than references, which leads to a loss of information
when using it to summarize the audio content into a single sen-
tence. Typically, the vocabulary size used during inference is only
around 617 distinct words over the 1839 words present on average
in the references for the Clotho development-testing subset. AAC
systems are usually trained to predict the next token of a sentence
using previous words and the audio file. This means that the model
actually takes as input an audio and a caption, and the loss could
be used to score this input. We decided to simply use the Cross-
Entropy (CE) loss used in training to score each pair, and expecting
that an AAC system should be able to give a higher loss value when
the input caption does not match the input audio file than when they
match. Equations 1a and 1b describe how an audio and text element
are retrieved using the CE.

T2A(t, A, f) = argmin
a∈A

CE(f(a, tprev), tnext) (1a)

A2T(a, T, f) = argmin
t∈T

CE(f(a, tprev), tnext) (1b)

where t corresponds to a caption, T is the list of all captions, a is an
audio file from the A list of audio files. f is the AAC system which
produces the distributions of probabilities for the next words tnext

given the previous words tprev in the context of an audio file.

3. EXPERIMENTAL SETUP

3.1. Datasets

AudioSet [4] is the largest audio tagging dataset publicly available
and contains 2M pairs of audio/tag. The audio files last for 10 sec-
onds extracted from YouTube videos and the dataset contains 527
different sound events tags. Clotho [16] (CL) is an AAC dataset
containing 6974 audio files ranging from 15 to 30 seconds in length
extracted from the FreeSound website. The dataset is divided into
three splits used respectively for training, validation and testing,
containing five captions per audio file. In our experiments, each
audio file is resampled from 44.1 kHz to 32 kHz. During training,
we randomly select one of five captions for each audio file. Audio-
Caps [5] (AC) is the largest AAC dataset written only by humans,
containing 51308 audio files from the AudioSet dataset. Since origi-
nal YouTube videos are removed or unavailable for various reasons,
our version of the train split contains 46230 out of 49838 files, 464
out of 495 in the validation split and 912 out of 975 files in the test
split. In addition, we slightly improve caption correctness in the
training subset by manually fixing 996 invalid captions with gram-
matical and typographic errors. For the two AAC datasets, captions
are put in lowercase and all punctuation characters are removed.

The codebase used to download, read and extract data is a package
named aac-datasets2.

3.2. Metrics

For the AAC task, we report the five metrics used in the DCASE
Challenge task 6a. METEOR [17] is based on the precision and
recall of the words. CIDEr-D [18] uses the TF-IDF scores of the
shared n-grams between candidates and references. SPICE [19]
builds a graph representing the scene described by the captions and
computes an F-score with its common edges. SPIDEr [20] averages
the two previous metrics and finally, SPIDEr-FL3 is a combination
of the SPIDEr metric with a pre-trained system designed to detect
fluency errors. When one of them is detected, the SPIDEr score is
divided by a factor of 10. The codebase for AAC metrics is avail-
able as a public Pip package4 named aac-metrics. For the ATR task,
we use the Recall@k metric, which measures if a relevant (ground
truth) element is in the top-k retrieved elements.

3.3. Hyperparameters

The number of training epochs K is set to 400 with a batch size
set to 512. The optimizer used is AdamW with an initial learning
rate (lr0) set to 5 · 10−4, β1 set to 0.9, β2 set to 0.999, ϵ set to
10−8 and weight decay set to 2. Weight decay is not applied to
the bias contained in the network. The learning rate is decreased
during training at the end of each epoch k using a cosine scheduler
rule: lrk = 1

2

(
1 + cos( kπ

K
)
)
lr0. The gradient L2-norm is clipped

to 1 to avoid collapsing across seeds, the label smoothing reduces
maximal target probability by 0.2 and the mixup α hyperparame-
ter is set to 0.4. Since only the projection and the decoder part are
trained, a single AAC experiment runs in one hour on AC and three
hours on CL datasets with one V100 graphics card. To validate our
model, we used the FENSE metric [27] which is based on the cosine
similarity of the embeddings produced by a pre-trained Sentence-
BERT model combined with the same fluency error detector used
in SPIDEr-FL. During validation and inference, we used the stan-
dard beam search algorithm to generate better sentences. In order to
limit the number of repetition tokens, we forced the model to avoid
generating the same word twice in a single sentence, except for stop
words defined in the NLTK package.

2https://pypi.org/project/aac-datasets/0.3.3/
3https://dcase.community/challenge2023/

task-automated-audio-captioning
4https://pypi.org/project/aac-metrics/0.4.2/

https://pypi.org/project/aac-datasets/0.3.3/
https://dcase.community/challenge2023/task-automated-audio-captioning
https://dcase.community/challenge2023/task-automated-audio-captioning
https://pypi.org/project/aac-metrics/0.4.2/
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Table 2: Audio-language retrieval results on Clotho and AudioCaps testing subsets. Our results are averaged over five seeds. WC stands for
WavCaps dataset. Best values for each dataset/task/metric are in bold, and best values without external data are underlined. The asterisk *
denotes the results scaled by a min-max strategy described in 4.2.

Retrieval System Training #params Text-to-audio Audio-to-text
dataset dataset(s) R@1 R@5 R@10 R@1 R@5 R@10

CL

PaSST-N4 [21] CL+AC+WC 441M .261 .553 .693 N/A N/A N/A

CNN14-BERT [12] CL+WC 214M .215 .479 .663 .271 .527 .663
CNN14-BERT [22] CL 192M .167 .410 .539 N/A N/A N/A

Triplet-weighted [23] CL 185M .142 .366 .497 .169 .381 .514
TAP+PMR [24] CL 185M .171 .396 N/A .182 .399 N/A

CNext-trans (ours) CL 40M .137 .349 .480 .148* .404* .541*

AC

HTSAT-BERT [12] AC+WC 141M .422 .765 .871 .546 .852 .924
ONE-PEACE [25] CL+AC+7 others 2B .425 .775 .884 .510 .819 .920

MMT [26] AC 290M .361 .720 .845 .396 .768 .867
Multi-TTA [15] AC 187M .347 .703 .832 .402 .740 .872
TAP+PMR [24] AC 185M .368 .727 N/A .417 .762 N/A

CNN14+TAP+PMR [24] AC 192M .334 .688 N/A .431 .733 N/A

CNext-trans (ours) AC 40M .382 .733 .853 .398* .814* .919*

4. RESULTS

4.1. AAC and ATR results

The AAC results are given in Table 1. We also reported the SOTA
scores for each dataset, without reinforcement learning, without en-
semble method and with or without external captioning datasets.
On CL, our model performs better than the previous SOTA with-
out external data (CNN14-trans) in all metrics and uses more than
twice fewer parameters (40M instead of 88M). We believe this is
mainly due to our stronger pretrained encoder, which has a higher
mAP score on AudioSet and produces better features for AAC. On
AC, the model reach a score very close to the Multi-TTA method,
with only 0.002 absolute difference in SPIDEr despite having an
unbiased encoder not trained on the testing files of AC.

Retrieval results are shown in Table 2. Just as AAC results, we
reported the SOTA methods without ensemble methods and with or
without external captioning datasets. Since all values are not al-
ways reported, we added several SOTA methods to compare our
system with at least one other methods for each column. For the
T2A task on the CL dataset, our model performs better than the
DCASE baseline, but worse than most SOTA methods. However,
the system achieves the highest scores on AudioCaps without ex-
ternal data. Somewhat surprisingly, our system outperforms other
methods without external data on the A2T task on R@5 and R@10,
but not on the R@1 metric on both datasets.

4.2. A2T min-max scaling

We found that even if our system performs well on T2A task, the
results on A2T one were really low compared to the SOTA ones.
The system reaches an R@1 of 0.146 on AC and 0.038 on CL when
using raw loss values. We found that this is caused by a subset of
the captions, where the loss values are almost always lower than
the others for all audio files. For instance, in Figure 1a, the ver-
tically lowest green curve corresponds to the loss of a query with
all the other audio files, and is almost always lower than the other
curves. In particular, only 120 unique captions are retrieved for
1045 queries during the A2T task with raw losses, but we did not

find a strong correlation between these captions and the frequencies
of their words or their length. In order to clarify why it impacts only
the A2T task and not T2A, we provide a simple example in Table 3.
This example shows the loss values for three different audio Ai with
their corresponding captions Ci. When we perform the T2A task,
we select the retrieved audio Ai with the lowest loss value in the
column i, which achieves a perfect score in that case. However,
when we perform A2T, only the caption C1 is retrieved, because
its column has a range of value different from the others, which
explains the poor results when using raw loss values. To tackle
this problem, we propose a post-processing which scales each “col-
umn” (i.e., each series of values corresponding to a single caption).
In particular, we tried to normalize and standardize, but a simple
min-max scaling has led to the best results. We also added a rule
when two retrieved captions has the same score (zero when they are
the minimal value of their column) by using their original losses to
decide which one will be used. The impact of this scaling on the
A2T losses are given in figures 1b and 1c.

Table 3: Real loss values over 3 audio files and captions.

C1 C2 C3

A1 1.7 8.4 8.1
A2 2.1 7.6 8.5
A3 2.0 8.3 6.5

5. BENEFITS AND DOWNSIDES OF USING AAC SYSTEM

Recently, the authors of paper [28] showed that ATR systems usu-
ally fail to capture high-level relations between sounds by showing
corrupted captions to an ATR system. More precisely, they propose
to replace in caption the word “after” by “before” and vice versa
to invert the sequence of sound events described and name this the
Before-After Test (BAT). The ATR system should be able to give a
lower score for an incorrect input caption than for a correct one. We
believe that audio-language systems should be able to capture that
kind of information better than audio event classes, but the actual
metrics do not usually reflect the model performance on it. In ad-
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(b) Sorted losses for 3 audios over captions.
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(c) Scaled sorted losses for 3 audios over captions.

Figure 1: Losses for 3 queries over all retrieved items. The position of the relevant (ground truth) elements are shown with a cross.

dition to the perturbation proposed by them, we proposed to switch
the relation type from sequence to superposition and vice versa by
replacing some words or inverting the propositions of the sentence.
For example, the sentence “a man speaks then a dog barks” can
become “a man speaks as a dog barks” if we replace “then”, or be-
come “a dog barks then a man speaks” if we invert the propositions
between “then”. We detailed the different words tested in Table 4.

Table 4: Detailed words used for Replace. BAT stands for Before-
After-Test, seq2sup for sequence-to-superposition and sup2seq for
superposition-to-sequence.

Set Words Replaced by one of

BAT before after
after before

seq2sup followed by, and then, as, whilethen, before, after

sup2seq as, while followed by, and then,
then, before, after

Table 5: Accuracy over different perturbations on Clotho
development-testing subset. 0.5 is the score of a random model.

System Type Set Accuracy

MLP [28]

Replace BAT

.496
MLP+ACBA [28] .554
TFMER [28] .509
TFMER+ACBA [28] .685

CNext-trans (ours) Replace
BAT .768

seq2sup .825
sup2seq .903

CNext-trans (ours) Invert
BAT .892
seq .906
sup .778

The Table 5 shows that our model performs very well at dis-
criminating sound events relations, with 76.8% for the BAT, higher
than the best of the compared study (68.5%). We can also see that
our model performs very well on other tests which perturb the rela-
tions, with 90.6% It could imply that our model effectively captures

the sequence and superposition relations. We also noticed for the
Invert test with superposition words that our model is still able to de-
tect the correct caption, probably because the first sounds described
in those sentences are the loudest or longest ones in the audio.

Nevertheless, an AAC system requires computing the whole de-
coder pass-forward for each pair audio/caption, while usually ATR
systems compute separate embeddings for each modality. For the
A2T task, the post-processing is required to achieve an acceptable
performance, necessitating to keep the minimal and maximal value
of the loss for each caption, or an estimation of them. If a new
caption is added to the database, the minimal and maximal value
also need to be computed or estimated with several audio files. This
scaling should also be required for zero shot experiments, which is
close to the A2T task.

6. CONCLUSIONS

In this study, we propose a straightforward method for leveraging
any standard AAC system for A2T. We demonstrate that despite not
being specifically trained for it, an AAC system can achieve reason-
able performance on both the T2A and A2T subtasks. Furthermore,
it can even attain state-of-the-art scores compared to ATR meth-
ods that do not employ external data. We also observed that our
model often overestimates the loss value for a subset of captions
in the A2T task, resulting in poor results in the initial configura-
tion. To address this issue, we introduced a post-processing strat-
egy based on min-max scaling to mitigate bias in the scores. This
adjustment significantly improved the results, for instance, increas-
ing R@1 from 0.038 to 0.148 on Clotho. Finally, we evaluated our
system by perturbing the input captions and found that it outper-
forms another ATR method in distinguishing various sound event
relations. In the future, potential research directions could involve
modifying AAC training using a contrastive-based loss to enhance
ATR performance or developing new benchmarks and test databases
to refine the evaluation of ATR systems.
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lier, “Adapting a ConvNeXt model to audio classification on
AudioSet,” 2023.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is
All you Need,” in Advances in Neural Information Process-
ing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.
Curran Associates, Inc., 2017.

[8] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units
(GELUs),” 2016.
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