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ABSTRACT

Sound event detection involves the identification and temporal lo-
calization of sound events within audio recordings. Bioacous-
tic sound event detection specifically targets animal vocalizations,
which necessitate substantial time and resources for manual anno-
tation of temporal boundaries. This paper aims to address the chal-
lenges associated with bioacoustic sound event detection by propos-
ing a novel prototypical learning framework. Our approach fuses
contrastive learning and prototypical learning to use the limited
amount of dataset at its utmost. Further, our framework leverages
finetuning strategy with a novel loss function to develop a robust
framework. Experimental results on a benchmark dataset demon-
strate the effectiveness of our proposed method in accurately de-
tecting and localizing bioacoustic sound events, improving the F1
score from 29.59% to 83.08%.

Index Terms— Few-shot Learning, Contrastive Learning, fine-
tuning, bioacoustic sound Event Detection

1. INTRODUCTION

Sound event detection is the task of recognizing the sound events
and their respective temporal start and end times in a recording [1].
In the case of bioacoustic sound event detection, the task focuses on
animal vocalizations, which demand time and resources to anno-
tate each time stamp [2]. Few-shot learning (FSL) is a supervised
learning method that can achieve high performance on data from
completely different domains even with a small amount of data.
As all of these tasks encounter data scarcity and the difficulty of
building a framework generalized in the acoustic domain, FSL has
come into the limelight. In the previous DCASE-T5 challenges,
submitted systems achieved great performance by using the trans-
ductive inference method [3, 4, 5], improved prototypical learning
[6], contrastive learning [7], and multi-class classification learning
via splitting the audio segment into frame-level [8]. Nevertheless,
proposed methods showed relatively low performance on the eval-
uation dataset compared to the performance obtained on the vali-
dation set. The majority of existing methods adopted prototypical
learning to identify positive classes from negative classes. Proto-
typical learning itself demonstrated high performance, there were
two limitations to taking the performance to another level. Firstly,
the capability of high-level feature learning was challenging since
the model was trained on classifying binary classes, which are pos-
itive and negative. Second, the loss function of current prototyp-
ical learning [9] focuses on pulling positive classes, which we re-
fer to as “positive-based prototypical loss function (PPL)”. It may
be promising on the training dataset, which contains a sufficient
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Figure 1: Overview of the proposed framework. The framework
consists of a pretraining stage and finetuning stage. The pretraining
stage is described in (a). The encoder fθ is trained on the train-
ing dataset through supervised contrastive loss (SupCon) and PPL
functions. Also, the finetuning stage can be seen in (b). Pretrained
encoder fθ is finetuned on the validation dataset. We exploit NPL
function throughout finetuning process.

amount of positive class data, but it can lead to overfitting when the
amount of negative class data is much greater than that of positive
class. If the model is trained in the standard prototypical learning
manner, the embedding features of negative classes are highly likely
to be dispersed, while those of positive classes are well-clustered in
the embedding space. As the class imbalance problem is prevalent
in the bioacoustic domain, we propose a fine-tuning strategy with a
negative-based prototypical loss function (NPL) to ameliorate this
issue. The proposed method suggests additional training on nega-
tive class data to enhance the ability to aggregate negative classes
in the embedding space. By applying the proposed strategy, the
pretrained model can attain the superior capability to discriminate
between positive and negative classes. Through this strategy, the
pretrained model can achieve a higher F-measure on the validation
dataset.

2. METHODS

2.1. Outline

Our overall framework can be shown in Figure 1. We utilize
our method in N -way K-shot task. Prior to previous systems
[3, 4, 5, 6, 7, 8], we denote the positive segment as the target sound
event and the negative segment as the audio segments that do not
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contain the target sound event in each audio file. Given the fact that
training dataset contains 45 classes and task 5 is regarded as 5-shot
learning problem, we set N = 45 and K = 5. As each audio file
in the validation dataset should be considered independently, we
define negative segments from a single audio file as solitary nega-
tive classes instead of grouping negative segments into a single ‘un-
known’ class. Simply put, each audio file contains a single positive
class and a single negative class. Also, our system has 45 negative
classes along with 45 positive classes. This enables encoder net-
work fθ(·) to cluster positive segments more densely, maximizing
the gap between positive segments and negative segments.

2.2. Pretraining Stage

In the pretraining stage, we train the encoder network fθ(·). We
select each 2 × K positive segments and negative segments from
the dataset and set K segments as support segments and the other as
query segments. We denote the positive support set of class i as Sp

i

and the query set as Qp
i , and the negative support set and the query

set of class i can be expressed as Sn
i , Qn

i where |S| = |Q| = K.
The prototype of each set defined in class i, which is represented by
the mean embedding vectors, is defined as the equation below.

s∗i =
1

|S∗
i |

∑
(xi,yi)∈S∗

i

fθ(xi), q
∗
i =

1

|Q∗
i |

∑
(xi,yi)∈Q∗

i

fθ(xi) (1)

where (xi, yi) are the segment and its label of the class i in each set.
Equation 2 describes PP i

j , which is the euclidean distance between
positive embedding vectors of Qp

i and positive support prototype of
class j, spj .

PP i
j =

√∑
x∈Q

p
i

(fθ(x)− spj )
2

 (2)

In the same way, we denote PN i
j , which is the euclidean distance

between embedding vectors of Qp
i and negative support prototype

snj .
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2
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We can formulate positive-based loss for class i as the equation be-
low.

ppli = −log

(
exp

(
−PP i
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)∑N
j=1

(
exp

(
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j

)
+ exp
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−PN i

j

))) (4)

Using equation 4, PPL is described as the equation 5.

PPL =
1

N

N∑
i=1

ppli (5)

We pretrain fθ(·) with PPL function and supervised contrastive
(SupCon) loss function [10] to enhance the feature representa-
tion capacity of fθ(·). We build a 2-layer projection layer gθ(·)
to create embedding vectors for each audio segment in the fol-
lowing step. Thus, our total loss function for pretraining step is
Ltrain = LPPL + LSupCon. We adopt 3-layer ResNet [11] net-
work from previous years’ method [3] as fθ(·). We set the output
embedding dimension to 2048 for LPPL, and downsize the dimen-
sion to 512 for LSupCon. Through the pretraining stage, the en-
coder network fθ(·) can attain the ability to embed positive classes
well in the embedding space.
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Figure 2: Let zpi = fθ(x
p
i ) be the positive embedding vector in

the query set of class i, and zni = fθ(x
n
i ) as the negative embed-

ding vector in the following set. (a) depicts PPL function, which
seeks to minimize PP i

∗. (b) describes the NPL function, minimize
NN∗ while maximize NP i

∗. Given that the encoder network al-
ready possesses the capability to cluster positive classes, we utilize
NPL during the fine-tuning stage to increase the distance between
sn∗ and sp∗. The red line infers pull force, and the blue dotted line
refers to push force.

2.3. Finetuning Stage

After the pretraining stage, fθ(·) is capable of detecting positive
segments from negative segments. Nonetheless, the dataset is com-
prised of a large number of negative segments and a scarce amount
of positive segments in the bioacoustic domain. This fact may not
guarantee the good performance of fθ(·) on the general bioacoustic
domain. In order to resolve data scarcity and performance mainte-
nance issues, we figured that a sole training stage was not enough.
Based on the unique characteristic of the bioacoustic dataset, we
finetune fθ(·) to aim at negative-based feature learning, which is
the opposite of the aforementioned stage. We display a comparison
of PPL and NPL in Figure 2. Further, we propose a further devel-
oped Distance-based NPL function by incorporating the Furthest
Point Sampling (FPS) algorithm [12] into the NPL function.
Negative-based Prototypical Loss We add an additional definition
of distances between embedding vectors of Qn

∗ and support proto-
types. Unlike PPL, NPL minimizes the distance between negative
embedding vectors and sn while maximizing the distance between
the positive embedding vectors. We redesign the positive-based loss
ppli as the equation 6.

pnli = −log

(
exp

(
PN i

i

)∑N
j=1

(
exp

(
PP i

j

)
+ exp

(
PN i

j

))) (6)

Following the equations 2 and 3, we define NP and NN as eu-
clidean distance of negative query embedding vectors between the
positive support prototype and negative support prototype. Equa-
tion 7 and 8 describes NP and NN specifically.

NP i
j =

√∑
x∈Qn

i

(fθ(x)− spj )
2

 (7)

NN i
j =
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(fθ(x)− snj )
2

 (8)
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And we add new negative-based loss nnli to minimize the gap be-
tween negative embedding vectors and sn. The following distance
function is described below.

nnli = −log

(
exp

(
−NN i

i

)∑N
j=1
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exp

(
−NP i

j

)
+ exp

(
−NN i

j

))) (9)

With equations 6 and 9, NPL function can be summarized as equa-
tion 10.

NPL =
1

N

N∑
i=1

(pnli + nnli) (10)

By finetuning fθ(·) with LNPL, fθ(·) learns the ability to cluster
negative embedding vectors and negative prototype more densely,
giving the effect of separating positive segments and negative seg-
ments.
Distance-based Negative-based Prototypical Loss While NPL
loss function randomly picks K support features and K query fea-
tures from 2 × K arbitrarily chosen features, we extend NPL loss
function by adopting the idea of the Furthest Point Sampling (FPS)
algorithm. FPS algorithm is a classic method used in 3D point
clouds [12]. Since we aim to clump negative embedding vectors
and negative prototype, we believe the distance-based selection of
query and support features can maximize the efficacy of NPL loss
function. All distances between 2×K randomly extracted positive
features and 2 × K negative features are calculated. The positive
and negative features with the shortest distance are selected as a
pair of reference features. Nearest-neighbor sampling method [13]
is attempted based on the selected positive reference feature and
negative reference feature. Thus, we set negative features placed
close to the positive features as a negative support set, and positive
features closely located to the negative features as a positive query
set. Then, we optimize the loss function to maximize the distance
between the negative prototype and positive query set so that we
can ultimately maximize PN . We conduct the furthest sampling
based on the prior negative reference feature in negative features.
Through this process, negative features located on the outskirts will
be selected from negative features, and non-selected features will
be located on the inner side among negative features. We set the
selected features to a negative query set and the unselected features
to a negative support set. The negative prototype created from neg-
ative support set is used to minimize the distance between negative
query set, eventually minimizing NN . In this way, we can boost
the initial goal of NPL by optimizing the maximization of positive-
negative distance and minimization of negative-to-negative distance
at the same time. The following procedures are illustrated in Figure
3. For post-processing and inference, we applied methods proposed
in the DCASE 2022 challenge [3].

3. EXPERIMENT

3.1. Experimental setup

We conducted the experiments for two purposes. First, we prove
that our novel framework is more applicable in the few-shot learning
domain than baseline methods. In the previous DCASE challenges,
transductive inference (TI) method adapted from [14] played a cru-
cial role in challenge [15, 16, 17, 18]. Here, we apply part of the TI
method as a variant to our scheme. Thus, we compare variants with
our method to analyze the impact of our novel finetuning strate-
gies as an ablation study. Second, we intend to prove the efficacy

Figure 3: We denote each positive and negative reference feature as
Refp and Refn. The triangle, circle, and star-shaped figure each
represent the feature vectors of the support set, the query set, and
the prototype respectively. (a) shows the process of maximizing
PN based on Ref∗ through nearest-neighbor sampling. (b) is the
process of minimizing the NN via the furthest point sampling.

of our proposed method by comparing the results of grafting the
finetuning strategy. We set contrastive learning and few-shot learn-
ing as our basic framework. In all experiments, the learning rate
was set to 0.001 and the input length was fixed at 0.2 seconds. To
prevent overfitting on any dataset, we implemented early stopping.
We did not use any augmentation or additional acoustic features.
We adopted the official evaluation metric1 as our evaluation metric.
Since the full annotation of the evaluation set was not released in
public, we considered the validation set of the DCASE 2023 task 5
dataset as the evaluation set.

Precision (%) Recall (%) F-measure (%)
Template Matching 2.42 18.32 4.28

Prototypical Network 36.34 24.96 29.59
DCASE2022 Winning Team [8] 77.50 71.50 74.40

Ours Pretraining 74.27 56.70 64.31
Finetuning 89.93 77.20 83.08

Table 1: The precision, recall, and F-measure of the validation set.

4. RESULTS

4.1. Performance Comparison

We compare our methods with baseline schemes and the winning
team of DCASE 2022 [8]. we describe our basic framework as
the “backbone” for convenience. Pretraining denotes the perfor-
mance of the encoder fθ(·) after the pretraining stage, and Fine-
tuning denotes the performance after the finetuning stage. As can

1https://github.com/c4dm/dcase-few-shot-bioacoustic
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System PB ME HB Overall
F-measure (%) Pre (%) Rec (%) F-measure (%)

Backbone 45.27 74.58 80.66 66.39 59.28 62.64
w. TI method 47.18 85.71 72.50 74.27 56.70 64.31

w. Distance-based NPL finetuning 63.04 95.41 95.60 90.17 74.38 81.52
w. TI method & Distance-based NPL finetuning 63.45 99.05 97.53 89.93 77.20 83.08

Table 2: The precision, recall, and f-measure of each subset in the validation set.

be seen in Table 1, our proposed method outnumbers both base-
line and 2022 challenge-winning team by a large margin. We also
evaluated our encoder network fθ(·) after each stage to confirm the
impact of the distance-based NPL function. The performance dis-
parity between the two stages clearly verifies distance-based NPL
function actually have a meaningful impact on developing the ca-
pacity to detect positive sound event even in the highly imbalanced
dataset, increasing the performance up to 18.77%. In Table 2, we
compare our basic scheme and its variants. We select the condition
where the distance-based NPL finetuning strategy and TI method
are additionally applied to our backbone for comparison. We select
systems with different conditions as mentioned in section 3.1. Our
system showed relatively low performance on the PB dataset rel-
ative to other datasets in general. We assume this phenomenon is
due to the drastic ratio between the positive segment and the nega-
tive segment as it contains a relatively short duration of the positive
segment. Since the features extracted from positive segments are
limited, the encoder network fθ(·) finds it more difficult to detect
positive segments. This phenomenon was consistently observed in
the performance of the DCASE2023 evaluation dataset [19]. All
of our submitted systems showed relatively low performance on the
CT dataset, in which the majority of positive segments are less than
0.2 seconds, which is the minimum input length of our method.

4.2. Ablation Study

In the ablation study, we compare our baseline scheme and the com-
bination of two different novel finetuning strategies. We compared
the case where only the basic training stage was performed for each
baseline and the case where original NPL finetuning and distance-
based NPL finetuning was applied.

System F-measure
Backbone 62.64

w. NPL finetuning 79.79
w. Distance-based NPL finetuning 81.52

Table 3: Ablation study of the proposed method.

Table 3 states that finetuning strategy with the NPL function and
the distance-based NPL function shows a noticeable numerical dif-
ference. We presume the following difference is based on the pro-
totype selection. While typical NPL selects support features and
query features randomly, distance-based NPL is based on euclidean
distance, which is more definite. This induces the network to fine-
tune in a way that estimates the position of the positive prototype
and escalates PN , increasing performance more intuitively. The ef-
fect of distance-based NPL finetuning is visualized with t-SNE [20]
in Figure 4. As shown in figure 4, t-SNE of the same class tend to

cluster more densely after distance-based NPL is exploited. The fact
that the distance-based NPL performed better than the conventional
NPL was also confirmed in the performance of the evaluation set. It
was confirmed that the systems finetuned with distance-based NPL
performed better than the systems finetuned with typical NPL. The
performance gap was more prominent in the case where the positive
class and the negative class were very similar, such as MGE dataset
in the DCASE 2023 evaluation set [19].

Figure 4: (a) and (c) are extracted from the same audio, and (b) and
(d) are extracted from the same audio file. (a), (b) are visualizations
extracted after pretraining stage. and (c), and (d) are extracted after
finetuning stage. Red dot represents embedding vectors extracted
from positive segments, and blue dot represents vectors extracted
from negative segments.

5. CONCLUSION

In this paper, we presented a novel framework for few-shot bioa-
coustic event detection. Our method combines the contrastive learn-
ing method and prototypical learning and uses the novel finetuning
strategy of using a modified prototypical loss function. The pro-
posed pretraining process enables embedding positive class data on
the embedding space, NPL finetuning strategy enables pretrained
network to detect sound events in the environment where positive
sound events were unseen in the training stage or fine-tuning stage.
Experiments showed that the proposed framework can robustly sep-
arate positive and negative segments in highly imbalanced datasets.
Further, the fact that all of the submitted systems achieve high F-
measure scores on two new subsets proves its ability to generalize
to new classes [19].
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