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ABSTRACT

Respiratory sounds are significant relevant indicators for respi-
ratory health and conditions. Classifying the respiratory sounds of
patients can assist doctors’ diagnosis of lung diseases. For this pur-
pose, many deep learning-based automatic analysis methods have
been developed. However, it is still challenging due to the lim-
ited medical sound datasets. In this study, we apply a pre-trained
Vision Transformer (ViT) based model from the Masked Model-
ing Duo (M2D) framework for this task. While the M2D ViT pre-
trained model provides effective features, we think combining fea-
tures from different layers can improve the performance in this task.
We propose a multi-layer feature fusion method using learnable
layer-wise weights and validate its effectiveness in experiments and
an analysis of pre-trained model layers. Our approach achieves the
best ICBHI score of 60.68, 2.39 higher than the previous state-of-
the-art method.

Index Terms— Respiratory Sound Classification, ICBHI, Pre-
trained Model, Feature Fusion, Masked Modeling Duo

1. INTRODUCTION

Respiratory diseases have recently become the third cause of death
worldwide [1]. And due to the impact of the COVID-19 global pan-
demic, the need for diagnosing lung disease with efficient methods
with accuracy and lower work burden for physicians and medical
experts has been increasing. Respiratory sound classification is a
task to identify whether a breathing cycle of a recorded sound sam-
ple contains adventitious sounds related to potential disease in the
respiratory system. Conventional respiratory sound classification
requires medical experts to utilize stethoscopes to conduct ausculta-
tions for patients in person, which is highly demanding for hospitals
and other medical institutions [2].

International Conference on Biomedical Health Informatics
(ICBHI) Respiratory Sound Database [3] is a public database for de-
veloping the algorithms on respiratory classification tasks recorded
by microphones and electronic stethoscopes. The audio samples
in this dataset consist of respiratory cycles in variant lengths with
four kinds of annotations: normal, crackles, wheeze, and the combi-
nation of both anomalies. Crackles are discontinuous adventitious
sounds in breathing cycles and can be an early sign of cardiorespira-
tory conditions. At the same time, wheezes are continuous and mu-
sical sounds of anomaly, indicating the patient’s obstructive airway
conditions. The classification for these types of breath sounds can
be the basis for diagnosing or monitoring diseases such as asthma,
Chronic Obstructive Pulmonary Disease (COPD) [4], and pneumo-
nia. With the release of this dataset, more and more research atten-
tion has been drawn to the respiratory sound classification task and
further the automatic assistance for doctors’ diagnoses.

(a) Conventional (b) Proposed

Figure 1: Overview of the conventional method and the multi-layer
feature fusion workflow.

The sounds in the ICBHI dataset were recorded from various
positions and by many types of equipment, making distinguishing
different respiratory cycles difficult. Besides, the dataset scale is
limited. Until now, several previous studies have proposed mod-
els to tackle this task, and many novel structures or algorithms and
data augmentations have been introduced [5–11]. With the addition
of the limited dataset, pre-training visual models with large-scale
datasets have been widely used in ICBHI task [7–11].

The models from the self-supervised learning framework pre-
training on large-scale audio datasets have recently achieved com-
petitive performance in the image field and several audio tasks
[12–15]. In this study, we used pre-trained ViT [16] models from
the Masked Modeling Duo (M2D) framework [15] (M2DViT). We
adopted the M2DViT without changing the backbone configura-
tions, such as patch size and grid size.

While the features from the M2DViT can perform well in vari-
ous tasks, we expect to achieve even better performance by combin-
ing features from different layers to form effective representations
of audio samples. In this study, we explore the possibility of the
feature fusion available from the M2DViT layers for solving the
ICBHI task and propose methods for fusing effective features. We
experiment with our methods on the ICBHI task and validate the
effectiveness. In addition, we analyze the contribution of layer fea-
tures and show that the later layers contribute more.

In summary, the main contributions of this paper are as follows:
- Proposing to compose effective representations for the respira-

tory sound classification task using M2D layer features.
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- Conducting experiments with our multi-layer feature fusion
methods and comparing ours with the previous methods.

- Analyzing the performance of different layers of M2DViT and
their combinations in the respiratory sound classification task.

2. RELATED WORKS

2.1. Respiratory Sound Classification

Ever since the ICBHI2017 challenge and the release of the open
access dataset, researchers have trained and evaluated many deep
learning-based respiratory classifying methods to have better solu-
tions for this task. Early models like LungRN+NL [5] combine
ResNet-based architecture and mix-up augmentation method, and
then the attention mechanism was introduced with LungAttn [6].
The works after 2020 are widely presented with ImageNet [17] or
AudioSet [18] pre-training. And for RespireNet [8], the authors also
use a device-specified fine-tuning strategy to improve the perfor-
mance. The previous works are mainly based on ResNet structure
except for a recent work [11], which uses a simple CNN backbone
from PANNs [19] and contrastive learning with metadata strategy.
The self-supervised methods, such as contrastive learning, show
their validity in [11]. A concurrent work based on Audio Spectro-
gram Transformer (AST) [20] and contrastive learning with Patch-
Mix augmentation [21] shows that the pre-trained attention-based
model has the potential for better performance than other conven-
tional models.

2.2. Masked Modeling Duo

The adopted self-supervised learning framework of M2D [15]
is an effective method for general-purpose pre-training using a
masked prediction task. This method was originally inspired by
the Masked Autoencoder (MAE) [22] approach utilized in Masked
Image Modeling (MIM), along with the Bootstrap Your Own La-
tent (BYOL) [23] framework, which enables the direct acquisition
of latent representations through a target network.

In the two divided networks of M2D, the framework learns to
predict the output of the target network with the output of the online
network. At the same time, visible patches serve as input for the
online network, and masked patches for the target network. While
the online network weights are optimized to minimize the loss, the
weights of the encoder in target network ξ are updated based on the
exponential moving average (EMA) of the online network θ with a
decay rate τ .

M2D learns effective representations in the online encoder. Af-
ter training, only the trained parameter of the online encoder fθ is
transferred as a pre-trained ViT model, which we call M2DViT, for
downstream tasks. The M2DViT pre-trained weights are available
online1 and used in our experiments, which are pre-trained on Au-
dioSet [18]. Unlike previous works, we combine multi-layer feature
outputs.

2.3. Feature Fusion

The method of Feature Fusion was broadly proposed to deal with
multi-modal tasks [24, 25]. There are numerous approaches to ex-
tracting features from different levels of deep learning models. The
skip connection structure and multi-scale attention mechanism have

1https://github.com/nttcslab/m2d

Figure 2: The multi-layer feature fusion calculation flow. F0, T0,
and C are frequency bins, time frames, and channels in a spectro-
gram, respectively.

been widely used. For example, in the work, MS-CAM [26], an it-
erative attentional feature fusion method performs excellently in vi-
sion models. And for another instance, in the work of MFVT [27],
the authors proved that the fused features in the ViT-based model
are a potent strategy in the fine-grained visual categorization task.
Besides, in audio-related tasks, the multi-layer feature fusion serves
as a powerful method, as reported in [28]. The mechanism of multi-
layer feature fusion is similar to the skip connection essential for
convolutional networks such as ResNet [29] and DenseNet [30],
and various methods for connecting layers are proposed. The skip
connections encourage the networks to obtain semantic features
from the early layers of the model [31]. The fusion is usually
performed by operations of addition or concatenation with a fixed
weight of the features [29, 30].

3. METHODOLOGY

The encoder in M2DViT is based on the ViT backbone, consisting
of 12 transformer blocks as layers. The ViT first patchifies the input
mel-spectrogram and then processes it with a projection of a linear
layer, transferring the spectrogram into patch embeddings. Then
the fixed sinusoidal positional embedding is added to the input. The
multi-head attention is applied , followed by the MLP containing 2
linear layers with a Gaussian error linear unit (GELU) activation.
We denote the transformer blocks as transformer layers for simplic-
ity. The outputs from all transformer layers have the same shape,
and all the layer outputs are available for later use, such as classifi-
cation.

The conventional M2DViT, shown in Fig. 1(a), takes a spec-
trogram input, processes the input in the transformer layers, then
outputs the last layer feature z ∈ RB×T×D , where B is the input
batch size, T is the length of the sequence composed by encoded
spectrotemporal patches, and D is the embedded patch feature di-
mension. Then, only the output z is used afterward.
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One drawback of the conventional method is that the informa-
tion from different layers is not used as the representation for au-
dio [32]. The performance of the features from pre-trained ViT
layers can be imbalanced due to the structure and training met-
rics [28]. To address this problem, we introduce multi-layer feature
fusion methods to combine the layer features. We also use learn-
able layer-wise weights to balance layers with better performance
automatically, which is optimized as the training epoch proceeds.
Our approach enables arbitrary combinations of the layer features
as effective representations for later use.

The pipeline for multi-layer feature fusion is shown in
Fig. 1(b). And Fig. 2 shows the details of the feature calcula-
tion flow. The output features of all the layers can be defined as{
zi ∈ RB×T×D|i ∈ L

}
, where zi is the i-th layer output and L is

the number of layers.
Then, we calculate the multi-layer feature fusion z̃ as follows:

z̃ = concat({wizi|i ∈ Lfus}) (1)

where the concat is a function that concatenates features on the di-
mension of D, Lfus is the set of layer indexes of desired fusion, and
wi is a learnable layer-wise weight of the i-th layer in the fused fea-
ture. Note that the z̃ forms the shape of RB×T×DNLfus , where NLfus

is the number of the fused layers. As a result, the multi-layer feature
fusion enables us to utilize useful information in the features from
all the desired layers.

As a final operation, we apply temporal poolings to summarize
time-framed features in a feature vector:

z′ = mean(z̃) + max(z̃) (2)

where z′ ∈ RB×DNLfus is the final fused feature vector used as the
input for later use (e.g., classification) and mean/max are temporal
operations each. We follow [28] for the effective temporal pooling
operation.

4. EXPERIMENTS

We conducted experiments to validate our proposals. The follow-
ing sections explain the dataset (Section 4.1), evaluation metrics
(Section 4.2), and experimental setup (Section 4.3). Then we show
experimental results with vanilla M2DViT (Section 4.4) and results
with our proposals as well as previous studies (Section 4.5).

4.1. Dataset

ICBHI Respiratory Sound Database [3] consists of 920 annotated
respiratory audio samples recorded from 126 patient subjects of the
labs and hospitals in Portugal and Greece. The samples are offi-
cially split into a train set (539 samples, 60%) and a test set (381
samples, 40%). The database contains two sets of annotations. One
is for whether a cycle contains crackles, wheezes, or a combina-
tion of both, and some with no adventitious respiratory sounds. The
other is the annotation of the locations of the adventitious respi-
ratory sounds. In the 6898 respiratory cycles, whose lengths vary
from 0.2s to 16.2s, 1864 contain crackles, 886 contain wheezes,
and 506 contain both crackles and wheezes. The others are normal
ones. The chest locations from which the recordings were acquired
are also provided. Noise levels in some respiration cycles are high,
which simulates real-life conditions. The recordings were collected
using heterogeneous equipment, and their duration ranged from 10s
to 90s. The average time duration of the cycles is 2.7s, and the total
length is 5.5h.

Method Masking ratio r Sp Se Sc

M2DViT 0.6 71.59±2.64 43.25±1.60 57.42±0.79
0.7 75.78±5.84 39.51±4.64 57.64±0.86

Table 1: The ICBHI performance comparison between different
pre-training masking ratios of M2DViT.

4.2. Evaluation Metrics

The evaluation metrics in our experiments are adopted from the
original ICBHI2017 challenge, which is common in the previous
papers. There are three scores, sensitivity Se, specificity Sp, and
the average of these two metrics ICBHI score Sc. They are calcu-
lated as the following formulas:

Se =
Pc + Pw + Pb

Tc + Tw + Tb
(3)

Sp =
Pn

Tn
(4)

Sc =
Se + Sp

2
(5)

where Pc, Pw, Pb, and Pn are numbers of right prediction for the
cycles containing crackles, wheezes, both of the two adventitious
sounds and none of them. While Tc, Tw, Tb, and Tn are the total
numbers of four categories respectively.

4.3. Experimental Setup

We used an Adam optimizer with a learning rate of 1e-4 and weight
decay of 1e-4, cosine scheduled in the M2DViT model. The batch
size is set as 64. The classifier used in our study is a 4-class linear
classifier. The input spectrograms are patchified with a patch size of
(16, 16), and the grid size is (5, 38). The number of encoder embed-
ding dimensions is 768. The ViT-base pre-trained model consists of
12 transformer blocks with the same number of attention heads [16].
We fine-tuned all the pre-trained ViT model weights in 150 epochs
and used weighted cross-entropy as our training and evaluating loss.

We used the same ViT and training settings described above for
all the setups. For the adaptive weight for all layers, we initialized
them as all layers weighted the same value of 1.0 and updated them
after training every epoch. All our experiments run five times with
random seeds, and we provide statistics of results.

4.3.1. Preprossessing and Data Augmentation

We followed the basic experiments settings with [11], in which the
authors also used mel-spectrogram as input. Due to the dataset’s
recording conditions, the audio samples’ sampling rates vary in an
extensive range from 4 kHz to 44.1 kHz. We first resampled them
into a fixed sampling rate of 16kHz. And for different durations
of the samples, we ensure that all samples have the same desirable
length of 8s. For longer samples, we limited them to 8s from the
beginning of each clip. While for the shorter samples, we circularly
pad them until we get the standard length. Because most of the
respiratory cycles are shorter than 8s.

In this length of time, the model can compose representations
for most of the respiratory cycles. The spectrogram transform set-
tings in our experiments are the default in M2D. The samples are
converted into a time-frequency representation of a log-mel spec-
trogram with 80 mel filterbanks, a window length of 400, and a hop
length of 160. The minimum and maximum frequencies are 50 Hz
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Method Architecture Pre-training Fused Layers Layer-wise Results
dataset weights Sp Se Sc

LungRN+NL [5] ResNet - - - 63.20 41.32 52.26
LungAttn [6] ResNet - - - 71.44 36.36 53.90

Wang et al. [7] ResNeSt [33] ImageNet - - 70.40 40.20 55.30
RespireNet [8] ResNet34 ImageNet - - 72.30 40.10 56.20
ARSC-Net [9] ResNet - - - 67.13 46.38 56.76

Nguyen et al. [10] ResNet50 ImageNet - - 79.34 37.24 58.29
Moummad et al. [11] CNN6 [19] AudioSet - - 75.95 39.15 57.55

M2DViT

M2D ViT [15, 16]
masking ratio=0.7 AudioSet

- - 75.78±5.84 39.51±4.64 57.64±0.86

M2DViT-Fusion

(i) 5th & 12th Fixed (1.0 for all) 75.43±5.22 41.18±5.80 58.30±0.97
(ii) 5th & 11th Fixed (1.0 for all) 82.05±4.16 38.06±3.24 60.05±1.00

(iii) 4th & 7th & 10th Fixed (1.0 for all) 79.69±2.68 39.96±1.56 59.83±0.72
(iv) All Fixed (1.0 for all) 79.71±3.58 40.34±2.55 59.97±0.69
(v) All Learnable 79.48±4.99 41.87±4.27 60.68±0.49

Table 2: The overall comparison of ICBHI performance of our methods and the previous ones. Except for the last result with learnable
layer-wise weight, all fused layer features are of the fixed weight of 1.0. All the results are presented with the mean values and standard
deviations.

Figure 3: The learned layer-wise feature weights of the M2DViT-
Fusion model with the best ICBHI score Sc. The weights are the
average of best epochs from 5 runs and normalized to the sum of 1.

and 8000 Hz. Then the transformed spectrogram is normalized and
standardized into a mean value of 0.3690 and a standard deviation of
0.2550. We also used the augmentation method SpecAugment [34]
as in [11]. The mask sizes for time and frequency are 20 and 40,
while stripes are 2 for both time and frequency in SpecAugment.
We shuffled the train samples, masking the blocks of the frequency
and time steps with time-wrapping augmentation to encourage the
network to learn robust features from the spectrogram.

4.4. Experiments with Vanilla M2DViT

We first compared M2DViT weights pre-trained with masking ratios
of 0.6 and 0.7 by fine-tuning them without our proposals. Table 1
shows that pre-trained M2DViT with a 0.7 masking ratio (M2D
r=0.7) performs slightly better than M2D r=0.6, and the Sc of these
two options are almost identical. While the original M2D r=0.6
showed better results on Se, M2D r=0.7 weight was better on Sp.
The original M2D r=0.6 showed better results on the speech tasks,
and M2D r=0.7 was better on music tasks [15]. ICBHI with respira-
tory sounds is supposed to be more speech-like breathing noise [3].
Therefore, we used M2D r=0.7 in the following experiments.
4.5. Experiments with Proposals

We applied our multi-layer feature fusion methods with various
layer combinations, denoted as M2DViT-Fusion, and compared
them with the previous methods. Table 2 shows the results of
the best-performing layer combinations in the brute-force param-
eter search, and Fig. 3 shows the learned layer-wise weights in the
M2DViT-Fusion of the epoch with the best ICBHI score Sc. It is

worth noting that the representation dimensionality varies from D
in M2DViT to D × 2 in (i) and (ii), D × 3 in (iii), and D × 12 in
(iv) and (v). For the sake of experiment time constraints, we learned
layer-wise weights only when using all layers.

We find that the 11th layer would provide the most significant
features for the ICBHI task; Fig. 3 shows that the 11th is the best
for (v) in Table. 2 with all layer fusion with learnable layer-wise
weights, and the (ii) 5th & 11th layer fusion shows the best Sp re-
sult. Fig. 3 also shows a trend that the later layers perform better,
though the performance drops at the last layer.

We also found that learning the layer-wise weights is better than
the fixed weights, showing the effectiveness of the layer feature
weighting; while the results of (v) with learnable weights and (iv)
with fixed weights are highly overlapping.

Compared with the previous studies, (v) fusing all layers
with learnable weights shows the best average ICBHI score of
60.68±0.49, about 2 point improvement from Nguyen et al. [10],
with a score of 58.29. For the Sp, (ii) 5th & 11th shows the best
result of 82.05±4.16, more than 2 point improvement from Nguyen
et al., with a score of 79.34. However, for the Se, ARSC-Net shows
the best result of 46.38. Overall, we think the results validated the
effectiveness of our proposals.

5. CONCLUSION
We introduced a novel feature fusion method to the classifica-
tion task on the ICBHI dataset. And in the experiments, our
M2DViT-Fusion methods showed a better performance than the
vanilla M2DViT. The results proved that multi-layer feature fu-
sion is an effective way to extract effective audio representations,
including the proposed learnable layer-wise weight. In the layer
weight analysis, we also found the later layers contribute more. The
fine-tuned model got the best ICBHI score of 60.68 on the ICBHI
dataset, which is improved by 2.39 compared to the previous SOTA
method. While we exhibited improvements, the result would still
need further improvement for practical diagnosis assistance. Pos-
sible directions may include effective augmentation techniques and
new large-scale respiratory sound datasets to help models achieve
desirable performance in the future.
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