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ABSTRACT

While there is the saying of two heads are better than one,
having multiple opinions brings the problem of finding a common
ground. For data, multiple annotator opinions are usually aggre-
gated into a single set of labels, regarded as the ground truth. With
this ground truth, classification models can be trained in a super-
vised way to learn the annotated data categories. Finding a suitable
aggregation for multiple annotator opinions is the topic of research
in many domains. In this work we investigate the use of raw data
obtained from multiple annotators with various levels of reliability,
to train a model for audio classification. The model sees all the indi-
vidual annotator opinions and learns the categories without the need
of aggregating the information. The results show that using a fully-
connected layer that models individual annotators, it is possible to
leverage the data distribution and learn to classify sounds without
the need for aggregation of labels.

Index Terms— audio tagging, multi-annotator, crowd layer.

1. INTRODUCTION

Identifying what sounds are present in an audio clip can be used in
multiple applications such as surveillance [1], environment moni-
toring [2], health care monitoring [3] or music tagging [4] among
others. The most simple definition for this task is audio tagging in
which a classifier aims to identify the active sounds in a clip, given
a set of classes it has been trained to recognize. The effectiveness
of supervised machine learning heavily depends on the availability
of good quality and extensive labeled datasets. A way to establish a
good quality of the data is to have an expert annotate it carefully. At
the same time, having a unique expert annotating everything will,
in practice, teach the classifier to behave like this specific expert.
However, some experts may disagree on the categories in the data,
which creates the problem of establishing the ground truth based on
multiple expert opinions, which is a time-consuming and expensive
way to annotate data, and brings the additional problem of finding
the common ground.

A simple and often used alternative is to have multiple annota-
tors that are not necessarily experts on the task [5]. By using the
knowledge of crowds it is possible to dispose of the experts, re-
ducing the cost. Applying the same principle, to reduce annotation
time, each non-expert annotator sees a subset of the data, which re-
sults in an sparse annotation, where a single annotator does not have
to see all the data, but still each instance is annotated by more than
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one annotator. To obtain large amounts of annotated data, crowd-
sourcing has been used as a convenient solution [6, 7], despite its
obvious drawbacks of uncontrolled data quality.

Several works in different domains have attempted to study how
to best utilize the information and learn from multiple annotators.
In [8] the competence of a large pool of annotators, who partially
annotate the same data, is estimated. The method, called MACE
- Multi-Annotator Competence Estimation, uses an unsupervised
model that learns from redundant information and is able to identify
the trustworthy annotators and predict the correct underlying labels.
The drawback of the method is that needs a specific data structure
and careful selection of parameters. In [9] authors proposed selec-
tion of an optimal subset of annotators from a pool of workers. They
studies three real-world datasets: question-answering dataset; dis-
ambiguity dataset and image dataset. However, in the case of a large
number of annotators, the computational demands of such combi-
natorial procedures are notably high. A simpler approach is to allow
multiple annotators to verify and make corrections of previously an-
notated data, although not always successfully; for example, in [10]
the authors mention that even with five curation stages there was
almost never a consensus among annotators.

Selecting subsets or aggregating opinions requires a pre-
processing step controlled by design choices and parameters which
entangle the interpretation of the final results for the task at hand.
In previous work, we used MACE to aggregate annotator opinions
for crowdsourced audio tags [11], and observed that it produces a
larger amount of labels than the majority vote approach.

In this work, we perform a systematic study of how the deep
learning model itself can cope with the multiple opinions instead of
providing it with the single, aggregated, label per training item, for
the task of audio tagging. We include both simple and state-of-the-
art architectures trained for audio tagging, and investigate if aggre-
gation brings any advantage in training. We follow the setup of the
crowd layer proposed by Rodriges et. al. [12], a fully-connected
layer that learns from the crowd. The authors show how this ap-
proach works for multiple tasks, e.g. binary classification, multi-
class classification and regression. In [13], the authors model indi-
vidual annotators, weighting them differently based on the experts
reliability in a network, “doctor net”, modeling medical doctors.
However, Rodriges et.al. show that the crowd layer outperforms the
“doctor net” approach, albeit on a different dataset collected using
MTurk. Here we investigate the effect on performance of the crowd
layer, in addition to training with labels generated by MACE, and
training directly with the raw data.

The paper is organized as follows: Section 2 introduces the
multi-annotator dataset and explains the crowd layer implementa-
tion and how it is used in this work; Section 3 presents the audio
tagging systems tested and introduces the combinations of aggre-
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gation considered; it also includes an analysis of the results, and
discussion of the benefits of using a crowd layer instead of label
aggregation methods; finally, Section 4 presents conclusions and
future work.

2. LEARNING FROM MULTI-ANNOTATOR DATA

In [11] we presented a study of annotator and annotations relia-
bility for crowd-sourced audio tags for real-life acoustic scenes1.
We showed that the aggregation of the multi-annotator labels using
annotator competence estimation and true label prediction through
MACE produces a plausible and trustable ground truth. We ob-
served that by gradually eliminating the less trustworthy annotators
from the aggregation, the level of inter-annotator agreement in the
predicted aggregated labels gradually improved. Nonetheless, dis-
carding annotators should be limited to the outliers only, in order to
retain as much information and opinions as possible.

When annotating real-world data and aggregating the informa-
tion, it is not possible to evaluate the correctness of the resulting la-
bels. However, we conducted a subsequent study that included syn-
thetic data, and observed that the labels produced through MACE
aggregation are faithfully representing the ground truth [14], with
an 86% F-score, (97% precision and 77% recall), much better than
the typical majority vote aggregation (68% F-score, with 98% pre-
cision, 52% recall). We therefore consider the labels produced us-
ing MACE a sufficiently accurate representation of reality, and use
them as reference in the evaluation of the classifiers.

2.1. Dataset

The dataset used in our experiments is the MATS (Multi-Annotator
Tagged Soundscapes) data, published with the study in [11]. It is
a subset of TAU Urban Acoustic Scenes 2019 [15], consisting of
audio from three acoustic scenes (airport, public square, and park).
The audio clips are 10 seconds long, and some of them are con-
secutive segments of one long recording from a single location. A
total of 133 annotators, students taking an audio signal processing
course, annotated a randomly assigned set of 131 files each, such
that each audio clip was annotated by five different annotators. The
complete details about the data annotation process and its postpro-
cessing is explained in [11]. The unbalanced nature of the MATS
dataset can be observed based on the numbers from Table 1, with
the most dominant sounds in the data being related to human pres-
ence and traffic.

For the experiments, we partition the data into training, vali-
dation and test sets following the DCASE 2019 Task 1 split that
respects the location ID of the original recordings, ensuring that all
clips of the same long recording are placed into one single subset
(training, validation or test). The partitioning results in sets contain-
ing 1772 clips for training; 762 for validation and 1099 for test.

2.2. Crowd layer

A general-purpose crowd layer was proposed in [12], which allows
training of neural networks directly using the labels produced by
multiple annotators. The authors showed that the model is able to
capture the reliability and biases of different annotators, achieving

1The MATS (Multi-Annotator Tagged Soundscapes) dataset is available
at https://doi.org/10.5281/zenodo.4774959

class labels MACE majority vote

adults talking 2728 2190
footsteps 1853 828
traffic noise 1580 634
birds singing 979 648
children voices 917 446
music 152 69
announcement/speech 148 73
siren 98 37
dog barking 84 25
announcement/jingle 35 8

Table 1: Statistics of class labels in the data used for experiments
resulting from combining the multiple annotations

state-of-the-art results for three different tasks. In this study, we
used the author’s code2 and adapted it from TensorFlow to PyTorch.

We use the PaSST model [16] and extend it with the crowd layer
for the purpose of our study. The PaSST architecture is first ex-
tended with a fully-connected layer for the multilabel classification
of the ten sound classes. Then the crowd layer is added as the very
last layer, having as inputs the actual classification layer. The crowd
layer learns to map the probabilities of the classification layer to the
raw labels, assumed to being capable of capturing the bias and re-
liabilities of the annotators. The classification layer of the network
becomes a shared layer among the annotators, a bottleneck that dur-
ing training receives adjusted gradients from the different opinions,
aggregates them and backpropagates to the rest of the network.

Given the output of a model denoted as σ, the activation of
the crowd layer for each of the annotators r can be defined as
ar = fr(σ), fr being the annotator-mapping function. The orig-
inal publication proposes a few different implementations of the
annotator-mapping function, ranging from a matrix function with
per-class biases to a single vector function without bias. In this
work, we considered the more simplistic implementation, and use
the linear transformation of the input, without per-class bias. The
layer is defined in the following equation:

fr(σ) = wr ⊙ σ, (1)

where w is the annotator specific vector. The raw annotation is
sparse, with only five opinions per clip in a large pool of annotators,
therefore it is not necessary to propagate information from all out-
puts; a mask is used to set to zero the gradient contributions of the
missing labels (corresponding to annotators that did not provide an
opinion to the current clip).

Two different scenarios involving PaSST models are used: one
that uses PaSST only to produce embeddings, which are used as in-
put of a simpler model with a fully connected layer; and another one
in which the weights of the entire PaSST architecture are fine-tuned
during training. Once the model has been trained, the crowd layer
is removed, and the remaining architecture is used as a classifier on
the test set, with the weights of the model expected to have learned
the true distribution of the classes. Note that, to evaluate the model
performance, the labels of the test set were processed using MACE,
as described in the previous subsection.

2https://github.com/fmpr/CrowdLayer
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MACE Majority Vote
Model setup Macro-F1 Micro-F1 mAP (95% CI) Macro-F1 Micro-F1 mAP (95% CI)

mel CNN
baseline 32.51% 72.40% 0.41 (0.39, 0.43) 26.95% 63.94% 0.30 (0.29, 0.32)
raw 29.13% 65.60% 0.40 (0.38, 0.41) 26.93% 63.03% 0.29 (0.27, 0.30)
crowd 35.13% 73.99% 0.41 (0.39, 0.43) 30.33% 62.06% 0.31 (0.27, 0.35)

PaSST emb

baseline 47.03% 79.51% 0.61 (0.56, 0.65) 51.37% 69.75% 0.63 (0.50, 0.77)
raw 38.73% 64.14% 0.61 (0.57, 0.65) 47.02% 72.87% 0.59 (0.54, 0.65)
weighed 46.18% 71.79% 0.60 (0.56, 0.64) 49.15% 71.01% 0.58 (0.53, 0.64)
crowd 51.42% 80.38% 0.62 (0.58, 0.67) 60.12% 69.77% 0.65 (0.52, 0.79)

PaSST baseline 45.73% 79.42% 0.67 (0.62, 0.71) 51.28% 73.68% 0.68 (0.55, 0.81)
crowd 53.15% 77.19% 0.69 (0.65, 0.74) 63.21% 73.79% 0.68 (0.58, 0.78)

Table 2: Comparison of the different considered setups, evaluated against MACE and majority vote aggregated reference.

Figure 1: Class-wise F1-score comparison for the PaSST emb systems with different training setups, evaluated against MACE labels.

2.3. Baseline systems

To evaluate the suitability of the crowd layer we test it under dif-
ferent conditions, in order to observe its effect independently of the
used model and features. We use as a baseline system a CNN with
three convolutional layers, each followed by batch normalization
and ReLu activation layer, denoted as mel CNN. This system is a
typical multiclass classification system having ten output neurons
(for the ten classes to be classified). It is trained using the MACE
aggregated labels as targets, and a feature representation consisting
of mel energies calculated using a window size of 2048 samples
with a hop length equivalent to 20 ms, and 64 mel filter banks, with
the lower and upper frequencies set to 50 and 14kHz. We train the
same system with the raw labels, by considering each clip as an
independent data point which we provide to the network with the
labels provided by one annotator. In practice, this means that one
audio clip is provided to the network five times, with five label sets
as available from the annotators pool. We denote this training setup
as “raw”. The same architecture is also trained using the crowd
layer, hence denoted by “crowd”. We use similar baselines also for
the PaSST architecture, indicated as PaSST emb (using PaSST only
to produce the embeddings feature representation) and PaSST (full
training of the entire network).

3. EXPERIMENTAL SETUP AND RESULTS

The evaluation of the systems is done by calculating standard au-
dio tagging metrics. The macro-average and micro-average metrics

(Precision, Recall and F1-score) and the Mean Average Precision
(mAP) are calculated for each system against the reference labels
obtained using MACE and against a second set of reference labels
obtained using majority vote. The results are presented in Table 2
and include the 95% confidence interval for mAP, calculated using
the jackknife estimation method.

3.1. Aggregate or separate: performance evaluation

The baseline system mel CNN obtains the lowest performance
when trained with the aggregated target labels, among the three
training setups. Its performance decreases considerably in terms of
F1-score when training with the raw data, indicating that the train-
ing pairs likely contain incorrect or contradictory labels which are
presented as targets to the same audio clip, creating fluctuations in
the loss function. On the other hand, the crowd layer successfully
uses the redundant information to correct for the labeling errors, no-
ticeable in particular in the macro-F1 performance; micro-average
F1-score and mAP do not change significantly, which seems to in-
dicate better performance for minority classes. The trend is seen
in both evaluation procedures, though, based on our experience and
previous work, we trust more the MACE labels as a reference.

Using the PaSST embeddings with the aggregated targets brings
a considerable improvement in performance, which is further in-
creased when using the crowd layer. Similar to the simple CNN,
using raw data in the training is detrimental, while the crowd layer
brings a significant boost to the class-wise scores. As an additional
experiment, we investigate the use of annotator competence as ad-
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MACE Majority Vote
Model P R F1 P R F1

PaSST emb baseline 80.61% 49.91% 57.98% 56.97% 66.33% 58.50%
PaSST emb crowd 89.97% 54.43% 62.57% 66.50% 74.30% 64.64%

PaSST baseline 95.60% 55.32% 66.25% 64.42% 74.51% 67.06%
PaSST crowd 94.81% 53.44% 66.82% 66.04% 76.37% 70.20%

Table 3: Macro-averaged metrics calculated for the training data for PaSST architectures, with and without the crowd layer .

Figure 2: Class-wise F1-score comparison for the PaSST systems in baseline and crowd layer training setups, evaluated against MACE labels.

ditional information in the raw data training setup. Here, we calcu-
late the competence estimates for each annotator from the training
data using MACE, and multiply the network target vector (binary
indicators of class presence) of each annotator by its competence.
This results in a weighted target information, which can be seen as
a form of data augmentation. The method, denoted as ”weighted”
in Table 2, brings a significant improvement compared to the raw
labels training scenario, but does not outperform other setups.

A detailed analysis of the class-wise F1-scores can be seen in
Figure 1: only the system trained with the crowd layer is able to
identify all 10 classes. The performance is quite similar between
baseline and crowd layer setups for the classes with higher number
of examples, but the less represented classes show large fluctuation
depending on the training setup. Here we can observe the advantage
of using the competence-weighted augmentation, which is benefi-
cial for the announcement speech and siren classes, but inconsistent
over the entire set of classes. The smallest class, announcement
jingle, is only detected in the crowd layer training case.

The best macro F1-score and MAP among all experimental
setups is obtained with the fine-tuning of the entire PaSST archi-
tecture, including the classification layer and the crowd layer. In
this setup, the model is initialized with the pretrained weights and
trained for 30 epochs with the MATS data. Note that micro-F1 is
higher when evaluated against the majority vote reference, which
contains a lesser amount of labels, according to [14]. An illustration
of the class-wise F1-scores is shown in Fig. 2, with classes arranged
in order of their size. We can clearly see that the crowd layer net-
work has better performance for the under-represented classes, even
though the MACE aggregation is designed to override the majority
vote result if a minority of the annotators are highly reliable [8].
This shows that no matter how sophisticated aggregation method is
used, the loss of information from the separate labels to the aggre-
gate ones may have a significant effect on the task where the data
under discussion are used.

3.2. Learning distributions

To study how the crowd layer learns the label distribution, we cal-
culate the macro-average metrics against the training data for the
PaSST systems (baseline and crowd training setup). The results,
presented in Table 3, show that the crowd layer helps the network
learn to mimic somewhat the distribution of the MACE labels, more
in the setup that uses embeddings. Continuing to train the whole
network instead of just extract embeddings from the pretrained net-
work is, as expected, a better way to learn the distribution of the
training data. Moreover, the very similar values of the metrics show
that the crowd layer does not lead to overfitting either. When clas-
sifying the training data, the scores against the majority vote aggre-
gates are generally better than against the MACE aggregates, but
this is due to the smaller amount of labels to compare, which is
reflected in a high recall. On the other hand, the precision of the
models is considerably higher for the MACE aggregation, showing
more robustness of the model in its predictions.

4. CONCLUSIONS

Performance of supervised models rely on the quality of the anno-
tated data, which can be obtained from multiple annotators to avoid
bias and leverage information from multiple annotators. In this
work, we investigated different methods to use the multiple opin-
ions, training different audio classifiers with aggregated or separate
labels. In our experiments, letting the model learn from multiple
annotators using a simple crowd layer had the best performance.
By adding this linear transformation to the model, we can avoid the
manual intervention into the dataset, and remove the influence of the
aggregation method on the model performance. However, a ques-
tion remains on the scalability of the approach, with extreme com-
binations like binary classification (single neuron) and large number
of annotators (e.g. thousands) requiring closer examination.
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