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ABSTRACT

Sound Event Classification (SEC) for fault detection of bearings in
rotating machinery has recently shown good results. Bearing fault
detection via microphones has advantages over the more traditional
accelerometer-based solutions, in terms of ease of sensor deploy-
ment, non-intrusiveness and hardware cost. These novel SEC meth-
ods often use deep learning (DL), which require large amounts of
labeled data. As events of faulty bearings are rare in practical sce-
narios, it can be time consuming to manually find and label exam-
ples of faults. Rather than labeling a complete dataset, active learn-
ing (AL) methods present the expert labeler with unlabeled samples
that are expected to be the most informative in the learning process.
This way the most interesting samples are labeled first, which al-
lows to only annotate a subset of the dataset, while still retaining
(close to) maximal accuracy. In this work a novel data set, that con-
tains acoustic data from accelerated life time tests for bearings, is
used to investigate the performance of two AL methods in terms
of classification accuracy and number of additionally selected and
annotated examples.

Index Terms— Active learning, Fault detection, Bearing mon-
itoring, Transfer learning

1. INTRODUCTION

An important part in industrial applications is rotating machinery.
Rolling Element Bearings (REB) are a common element in this ma-
chinery and most system failures can be attributed to these REB [1].
It is important to detect faults in these REB to prevent critical fail-
ures and this is most commonly done based on vibration analysis
[2], however research has also been done towards using sound sig-
nals for REB fault detection [3]. Various data-driven approaches,
usually Deep Learning (DL) based, have been investigated for the
purpose of REB fault detection in the last few years. As these ap-
proaches are data-driven, and often based on DL, large amounts of
data are required to train the associated models. For vibration anal-
ysis acquiring this data requires an accelerometer to be attached di-
rectly to the REB, which is not always trivial, especially in complex
machines. By using a microphone this can be done without needing
direct contact, making the data acquisition process easier, and it has
been shown that using sound signals for fault detection is a promis-
ing alternative to vibration analysis [4, 5, 6, 7]. However, even if a
lot of data can be acquired, the process of annotating this data re-
mains time and cost intensive. Active Learning (AL) methods have
been developed to reduce this cost by only annotating samples that
are the most informative for learning algorithms [8, 9]. The focus

of this work will be to use sound signals captured by a microphone
in combination with AL methods for fault detection in REB.

In literature AL methods have already been used for fault detec-
tion in industrial applications. In [10] an extension of the entropy
measure of model uncertainty was used to select the most informa-
tive samples to train a model that was learned on a data set with
isolated and compound faults for REB fault detection. A combina-
tion of entropy and complexity was used in [11] to select samples
for fault diagnosis in a gearbox showing a better performance using
this combination. AL was applied to cellular networks in [12], with
a comparison of 3 uncertainty based sampling methods, demonstrat-
ing their effectiveness. In [13] it is mentioned that using a single
criterion strategy might not be stable and a new criterion is pro-
posed that combines multiple commonly used criteria. A best ver-
sus second best uncertainty metric was used in [14] in combination
with label propagation and ensembles to improve the performance
of bearing fault diagnosis using a small training set.

The previously discussed works use vibration signals as data.
However, as mentioned earlier, this work will focus on using sound
signals. To the best of our knowledge, in the literature no prior
work regarding AL for REB fault detection using sound is found.
Nonetheless, AL in combination with sound has shown promising
results in other fields. In [15] AL methods were evaluated using 2
synthetic sound event datasets for sound event detection and it was
shown that training while keeping the original training set along
with the annotated samples resulted in a better performance. A com-
bination of AL and semi-supervised learning methods was used in
[16] on a total of 3 datasets containing sound data for gender iden-
tification, speaker identification, and emotion detection. In [17] an
alternating certainty sampling method was proposed where some-
times samples with high confidence were chosen instead of low
confidence to improve the robustness against incorrect annotations.
This method was evaluated on an urban sound dataset.

To compare AL methods a novel and unique accelerated bearing
life time test dataset is used. It contains data captured using an
accelerometer and 2 microphones. To the best of our knowledge,
there is no public dataset that contains sound signals from bearing
life time tests, as there are for vibration signals, e.g. IMS [18].

The rest of this paper is structured as follows. In Section 2
the AL methods that will be compared are explained. A detailed
description of the experimental setup is given in Section 3, this in-
cludes the dataset, the preprocessing, the architecture and learning
parameters of the models, and a description of the performed exper-
iments. The results of the experiments are discussed in Section 4.
Finally, conclusions and future work are given in Section 5.
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2. ACTIVE LEARNING

In this section the (AL) methods that will be used in the experiments
are discussed.

2.1. Uncertainty sampling

The first method, which is commonly used for AL, is based on se-
lecting the samples for which the model predictions are most uncer-
tain. For a classifier this often means that these samples are located
close to the decision boundary. A simple yet commonly used metric
to quantify predictive uncertainty is the information entropy,

H(X) = −
k∑

i=1

pilog(pi), (1)

where X is the sample under evaluation, k is the amount of classes,
and pi is the estimated posterior probability for the i − th class
as predicted by a classifier. In this work a Convolutional Neural
Network (CNN) is used to provide the probabilities for each class,
the model will be described in Section 3.3.

2.2. Hybrid sampling

To avoid sampling multiple similar samples that have high predic-
tion uncertainty the sampling criterion can be augmented with a
novelty metric. The latter is referred to as hybrid sampling. In this
way there is a potential to further decrease the annotation cost [8].
The Semi-Supervised Detection of Outliers (SSDO) [19] algorithm
is used to calculate the novelty metric. This algorithm is based on k-
means, but does not only take into account the distance to a cluster
center, but also the size and relative position of the considered clus-
ter. Formally, the hybrid sampling strategy is defined as follows:

S(X) = H(X) + αN(X), (2)

where N(X) is the score obtained by SSDO for a sample X and
α is a hyperparameter that balances both individual scores. Both
scores have ranges H(X) ∈ [0, 1] and N(X) ∈ [0, 1]. The sample
X with the highest S(X) is then selected as the most interesting.

3. EXPERIMENTAL SETUP

This section describes the dataset that was used in the experiments,
as well as the preprocessing that was performed on the data, the
model architecture and associated learning parameters that were
used, and finally the performed experiments.

3.1. Dataset

This work uses a novel data set, collected by Flanders Make, that
consists of data collected from multiple accelerated bearing life time
tests. Data was collected using an accelerometer, a microphone in-
side the safety cover of a setup, and a microphone outside the cover,
hereafter called the internal and external microphone, respectively.
The setup can be seen in Figure 1, with the placement of both the
internal and external microphone. The accelerometer was attached
directly to the bearing housing. All sensors captured data with a
sampling frequency of 50 kHz. A total of 64 accelerated life time
tests, or runs, were performed. For each bearing a small indent was
created on the inner races (IR) using a Rockwell-C indenter. The
lifetime was further accelerated by applying a radial load of 9 kN.
The test was stopped when either the stopping criteria of 20g peak
vibrations was reached or the test had to be stopped due to safety
concerns, e.g. overheating. The life time tests were performed with

Figure 1: The microphone setup used in the bearing life time tests.

varying settings, e.g. fixed or varying rpm, and other setups running
next to the test setup. It was also determined that the various life
time tests not only resulted in inner race faults, but also in outer race
and ball faults or in some cases it was considered as not faulty. The
experiments in this work use a subset of this dataset, more specif-
ically the data captured by the external microphone from only the
runs with an inner race fault, with no additional running setups, and
a fixed rpm during the run. Note that this rpm can vary between
runs, e.g. 1800 rpm for one run and 2000 rpm for another. In to-
tal the considered subset contains 10 runs that match these criteria.
The same setup was already used in previous works for accelerom-
eter based fault detection [20].

In addition to the captured data, two sets of ground truth la-
belling are also provided. It should be noted here that this labelling
is not based directly on the physical state of the bearing, but based
on analysis of the data captured by either the accelerometer or the
internal microphone. Using this labelling the moment in time pf
where the bearing starts having faulty behavior is determined. Data
prior to pf is then considered as healthy and data after pf is con-
sidered faulty. As there are two sets of labelling, pf is determined
separately for each.

3.2. Preprocessing

In this work the raw audio data is first transformed to log mel spec-
tra. This transformation is done using a window and hop size of 1s.
A total of 64 mel filterbanks are then extracted. This leads to an
input frame with shape (64,10), as each audio fragment is 10s long,
which can then be passed to the models. As the data consists of
multiple different runs, each run is separately standardized, using a
running mean and standard deviation, to have, approximately, zero
mean and unit variance. For the CNN the input frames are used
directly, while for SSDO the mean and standard deviation for each
filterbank are calculated over 10s and then stacked, resulting in a
128 dimensional feature vector.

After this preprocessing the data is split into 3 parts: 1) a train-
ing run that will be used to train an initial model, 2) a sampling set
that will be used to sample points from, and 3) a test run that will
be used to assess the generalization performance of the model. This
split is done in a leave-one-run-out scheme, meaning that there will
be 10 folds, as there are 10 available runs, with a single run in each
test set. From the remaining 9 runs one is chosen as the training run
and the other 8 are used as the sampling set. In this training run data
is taken so that the amount of healthy and faulty samples is roughly
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equal. More specifically, this is done by taking all the data after
pf and taking the same amount of data directly prior to pf . Then
a maximum of 100s of data from the start of the run is also added.
From the training run 20% will be used as validation.

3.3. Model architecture and learning parameters

The CNN model used in this work consists of 3 convolutional
blocks, using 64, 64, and 32 filters, respectively, 2 fully connected
blocks, both using 20 neurons, and a final fully connected layer
as output. A single convolutional block is a sequence of a convo-
lutional, batch normalization [21], maxpooling, and dropout [22]
layer. The fully connected block contains the same sequence with-
out the maxpooling. The leaky ReLu activation function was used
for all layers, except the final layer, which uses a softmax activa-
tion. The filters in the convolutional layers are all size (7,7) and
move with a stride of 1 in each direction. The maxpooling layers
use a (2,2) window and move with a stride of 2 in each direction.
All dropout layers use the default drop rate of 0.5.

A model was trained using the data described in Section 3.2 to
serve as starting point for the AL methods. This model was trained
for 100 epochs with the Adam optimizer [23] and a learning rate
of 1e−3. If the validation loss did not improve for 10 consecu-
tive epochs, the learning rate was halved. The weights were further
regularized by the L2 norm with a factor (λ) of 5e−6. All hyperpa-
rameters were empirically tuned independently from the test data.

The SSDO model, used for the hybrid sampling, was fitted us-
ing a contamination factor of 1e − 3, meaning that 0.1% of the
training data is considered as novel. The amount of clusters used by
the algorithm is set to 5% of the amount of training data.

3.4. Experiments

In this work a comparison of AL methods will be made to inves-
tigate the model performance on an independent test set in terms
of the employed number of additionally annotated examples. For
this purpose, the same experiment was repeated twice, once with
labels based on information from the internal microphone (YMic)
and once with labels based on the accelerometer (YAcc).

3 methods were compared to each other: 1) random sampling,
where samples are chosen at random to annotate, this will serve as
a baseline method , 2) uncertainty sampling, which uses the pre-
diction probabilities of the CNN to determine what samples to an-
notate, as described in Section 2.1, and 3) hybrid sampling, which
further incorporates a novelty metric, as described in Section 2.2.
To evaluate the methods, first an initial CNN model was trained on
the data from a single run that is available in the training partition,
as described in Section 3.3. Next a first sample is selected for anno-
tation using the considered sampling strategy. After the annotation,
the sample was added to the training set and the CNN model was
updated for 20 epochs and, if the hybrid sampling method was be-
ing used, the SSDO method was refitted. This process was repeated
200 times for each sampling method.

To quantify the performance the F1 score was used as a metric.
The faulty class is considered to have a positive label. As the leave-
one-run-out scheme was used, the mean and standard deviation of
this metric are computed over the folds. However, it was noticed
that the standard deviation was similar across the results, ranging
from 0.15 to 0.2, hence it will not be shown for reasons of clarity.

4. RESULTS

In this section first the results of the experiment where the YMic

were used will be discussed. Thereafter, the same experiment is re-

Figure 2: The F1 score comparison of the considered AL methods
and the baseline on the test set in steps of 40 annotated samples
using YMic.

peated but this time with YAcc. For both experiments the F1 score in
terms of the additionally annotated samples, ranging from 0 to 200,
will be tracked. As a baseline, the F1 score of a model trained using
the full set of training samples (on average around 15000 samples)
for 100 epochs was added.

4.1. Microphone labels

The F1 scores attained by the CNN model on the test set using the
AL methods described earlier and YMic are shown in Figure 2. It
can be seen that, while hybrid sampling does not perform as well
with low amounts of annotated samples, both uncertainty and hy-
brid sampling outperform both random sampling and the baseline
when respectively 80 and 160 samples are additionally annotated.
This indicates that by using AL the amount of samples that need to
be annotated can be significantly reduced, in this work by around
75 times or more. The difference between random sampling and
uncertainty and hybrid sampling can likely be attributed to the sam-
ple selection. By inspecting these samples it can be seen that data
around pf for the various runs in the sampling set is chosen sig-
nificantly more for uncertainty sampling, and to a lesser extent for
hybrid sampling, while random sampling follows a more even dis-
tribution across the entire set, as is to be expected. This is empir-
ically verified and will be discussed in Section 4.3. By choosing
samples around pf the model can learn a boundary between what
is healthy and faulty. However, as there is a domain shift to the
unknown bearing, it is expected that, while the boundary is likely
to be improved, it will not be a perfect match. The lower perfor-
mance of hybrid sampling up to 120 samples, could potentially be
due to a smaller similarity between chosen samples increasing the
complexity of the data in comparison to the other methods.

4.2. Accelerometer labels

The results attained on the test set when using YAcc are shown in
Figure 3. It can be seen that these results are similar to the results
attained using YMic, with increasing F1 scores when more sam-
ples are annotated. Uncertainty sampling also slightly surpasses the
baseline with 80 annotated samples. However, it does stagnate, and
even performs slightly worse, afterwards. The difference between
the 3 methods is smaller compared to the labels based on the micro-
phone, especially towards higher amounts of annotated samples. It
can be seen that hybrid sampling once again performs worse with
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Figure 3: The F1 score comparison of the considered AL methods
and the baseline on the test set in steps of 40 additionally annotated
samples using YAcc.

up to 80 annotated samples. This is likely due to the same reasons
as explained earlier. Additionally, as the accelerometer is expected
to detect changes earlier, and thus pf for YAcc is slightly earlier
than pf for YMcc, the samples around pf have an increased similar-
ity, which will cause less of these samples to be chosen, as they will
have a lower novelty metric. This possibly results in a too rough de-
cision boundary with a worse performance as a consequence. The
overall worse performance can likely also be attributed to the dif-
ference in pf and corresponding labels. With YAcc the distribution
of the healthy and faulty data is expected to overlap more. From the
moment the accelerometer signals are starting to change the sound
signals might still be very similar. This makes the problem more
difficult with worse performance as a consequence.

4.3. Sample selection

As mentioned earlier, it was noticed that uncertainty, and to a lesser
extent hybrid, sampling selected a significant amount of samples
around pf of a run. To illustrate this, an experiment was performed
where only a single run was available in the sampling set and 50
samples, selected using uncertainty and hybrid sampling, were an-
notated following the same process as described in Section 3.4. The
log mel spectrum of the specific run and a histogram of the selected
samples is shown in Figure 4. It can be seen that uncertainty sam-
pling selected 28 samples within 100 samples of pf while 20 were
selected, within the same group of samples, by hybrid sampling,
indicating that indeed a significant amount of samples are selected
around pf by uncertainty, and to a lesser extent hybrid, sampling.
Furthermore, it is indicated that samples are also selected with a
larger selection by hybrid sampling, around noise events that pop-
up in the healthy data, e.g. around 5000s or 500 samples, which
would cause the model to learn the data is healthy, regardless of
the disturbing noise events. This could have also contributed to the
improved performance of AL compared to random sampling.

5. CONCLUSION AND FUTURE WORK

In this work we compared two AL methods, more specifically un-
certainty and hybrid sampling, and a random sampling baseline
method to evaluate the performance with regards to generalization
to an unknown bearing when additional samples from known bear-
ings are annotated. This was done using a novel dataset that con-
tains accelerated bearing life time tests with data captured from an

Figure 4: The log mel spectrum of the sampling run (top) and a his-
togram, with bins of 100 samples, of the selected samples (bottom)
by uncertainty and hybrid sampling. The red line indicates pf .

accelerometer, a microphone inside a safety cover, and a micro-
phone outside the safety cover. Labels were provided based on the
microphone inside the safety cover and based on the accelerometer.

It is indicated that, for the labels based on the microphone inside
the safety cover, both AL methods outperform random sampling
and also outperform the baseline that uses all data. Furthermore,
the uncertainty sampling method does show a better performance
compared to hybrid sampling. This is likely due to more samples
being selected in the close vicinity of pf . When looking at results
for the labels based on the accelerometer, the difference between the
methods is not as clear. However, uncertainty sampling still shows
the best performance, also attaining a score similar to the baseline.
The hybrid sampling method does not perform as well, likely due to
smaller novelty metric between points near pf , as the accelerometer
can detect the fault earlier than the microphone. The results on both
sets of labels indicate that it is possible to attain a similar, or better,
performance to a method that does not use AL, while the amount of
annotated samples was reduced by a factor of around 75.

In future research we will include different faults, e.g. outer
race faults, into the experiments. We will also investigate the com-
bination of label propagation with the AL methods.
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