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ABSTRACT 

Sound event detection (SED) is one of tasks to automate function 
by human auditory system which listens and understands audito-
ry scenes. Therefore, we were inspired to make SED recognize 
sound events in the way human auditory system does. Spectro-
temporal receptive field (STRF), an approach to describe the 
relationship between perceived sound at ear and transformed 
neural response in the auditory cortex, is closely related to recog-
nition of sound. In this work, we utilized STRF as a kernel of the 
first convolutional layer in SED model to extract neural response 
from input sound to make SED model similar to human auditory 
system. In addition, we constructed two-branched SED model 
named as Two Branch STRFNet (TB-STRFNet) composed of 
STRF branch and baseline branch. While STRF branch extracts 
sound event information from auditory neural response, baseline 
branch extracts sound event information directly from the mel 
spectrogram just as conventional SED models do. TB-STRFNet 
outperformed the DCASE baseline by 4.3% in terms of thresh-
old-independent macro F1 score, achieving 4th rank in DCASE 
Challenge 2023 Task 4b.1We further improved TB-STRFNet by 
applying frequency dynamic convolution (FDYConv) which also 
leveraged domain knowledge on acoustics. As a result, two 
branch model applied with FDYConv on both branches outper-
formed the DCASE baseline by 6.2% in terms of the same metric. 

Index Terms— Sound event detection, STRF, Audito-
ry scene analysis, Human auditory system, auditory neural 
response 

1. INTRODUCTION 

Sound event detection (SED) is a task for recognition of sound 
event class and their corresponding time onset and offset [1-4]. 
SED is closely related to human auditory perception, in that 
recognizing sound events and their respective time information is 
essential for the understanding of surrounding acoustic context. 
Therefore, we were inspired to improve SED by exploiting find-
ings from auditory scene analysis (ASA), a field that aims to 
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translate complex acoustic scene into auditory perception repre-
sentations within human brain [5]. As sound passes through each 
part of auditory system, it is transformed into meaningful neural 
responses by which the auditory cortex can comprehend the 
perceptual meaning through several steps [6]. The processes 
include nonlinear amplification, frequency analysis, transfor-
mation from vibration into electric signal and higher-order neural 
computation [7-8]. While aforementioned steps are widely stud-
ied and applied to various audio and speech processing works [9-
11], the transformation of sound stimulus into auditory cortical 
neural response is still not entirely comprehended and remains as 
the subject of ongoing research [12-14].  

One approach to simulate the process of transformation 
from sound stimulus to auditory cortical neural response is to use 
spectro-temporal receptive field (STRF). STRF is defined as 
descriptive linear function which predicts primary auditory cor-
tex (A1) cell response for given time-frequency representation of 
the sound [15, 16]. To estimate STRF, several methods such as 
spike-triggered average [17], boosting [18] and machine-learning 
method such as SVM [19] have been applied to experimental 
data. Observation on A1 cell response and estimated STRF has 
revealed that A1 cells have modulation-reactive characteristic 
that they are easily activated by ripple stimulus which is tempo-
rally and spectrally modulated signal [20]. Such spectro-temporal 
modulation are known to mediate analysis of sound such as 
speech so that we can obtain the sound intelligibility [21]. In Chi 
et al [20], STRF is constructed considering such reactive charac-
teristic to dynamic modulation so that STRF captures the spectro-
temporal modulation. While some works used the constructed 
STRF on deep learning applications to extract perceptually im-
portant characteristic [22-24], STRF is yet to be applied on SED 
to the best of our knowledge. 

We applied STRFNet proposed by Vuong et al [22], which 
uses STRF as a convolution kernel in the first convolutional layer 
of the convolutional neural network (CNN) to imitate the neural 
response of primary auditory cortex (A1), on SED. However, 
STRFNet concentrates on extracting modulation property that it 
is not sufficient to extract various information within sound. To 
tackle the limitation, we propose two-branch model named as 
Two Branch STRFNet (TB-STRFNet). While STRF branch 
extracts the neuroscience-inspired dynamic modulation infor-
mation using STRF kernel, baseline branch uses conventional 
convolution to extract the complementary time-frequency infor-
mation which would not be captured by STRF branch. In addi-
tion, we apply frequency dynamic convolution (FDYConv) on 
TB-STRFNet to further improve the performance. While 
STRFNet is inspired by auditory neural response to the sound, 
FDYConv is inspired by the physical nature of time-frequency 
sound representation. FDYConv was shown to perform the best 
when applied on on both branches of TB-STRFNet. Joint appli-
cation of TB-STRFNet and FDYConv significantly improved 
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performance over TB-STRFNet, proving compatibility between 
two methods as well as the importance of considering domain 
knowledge. 

2. PROPOSED METHODS 

2.1. STRF construction 

We adopted STRF construction method by Chi et al [20], where 
STRF design is abstracted considering particular physiological 
A1 cell characteristic. Since A1 cell response can be predicted 
with convolution of sound spectrogram and STRF, STRF should 
reflect the A1 cell response property. There exists observation on 
physiological data that A1 cell response is effectively elicited by 
spectro-temporally modulated ripple [25, 26]. Ripple is defined 
as a spectro-temporally modulated signal which has temporally 
varying sinusoidal spectrum along log frequency spacing [27]. 
Given that A1 cell’s modulation-reactive property, STRF needs 
to be constructed to capture the spectro-temporal modulation. 
STRF design in Chi et al [20] is a function of both spectral and 
temporal modulation parameters, which are scale (Ω) and rate (ω) 
respectively. Scale represents neurons’ reaction on range of 
spectral modulation, while rate represents neurons’ reaction on 
range of temporal modulation. Spectrally and temporally various-
ly tuned neurons could be explained by different combinations of 
scale and rate values. 

Fig. 1 (a) represents constructed STRF examples for varying 
scale and rate settings. X-axis and Y-axis represent time and 
logarithmic frequency range respectively. STRF is always cen-
tered at its center frequency (CF). As 1 CF represents the center 
frequency, 2 CF and 0.5 CF are double and half of its center 
frequency respectively. STRF frequency range lies on 2 octaves 
from 0.5 CF to 2 CF. In fig. 1 (a), scale increases from left col-
umn to right column, while rate increases from top to bottom row. 

Spectral spacing of ripples is narrower in higher scale while it is 
wider at lower scale. This illustrates that STRF is narrowly tuned 
to its center frequency at higher scale while it is broadly tuned at 
lower scale. Temporal spacing of ripple is narrower in higher rate 
while it is wider in lower rate. This reflects the characteristics of 
STRF which is more reactive to impulsive stimulus with higher 
rate while more reactive to prolonged response time with higher 
rate. Therefore, the scale variation shows that scale reflects the 
neural frequency tuning property, while the rate variation shows 
that rate reflects the neural temporal response property. 

STRF has upward and downward direction as shown in fig. 
1 (b). While upward direction STRF captures increasing spectral 
component as time passes, downward STRF captures decreasing 
spectral component as time passes. Both directions of modulation 
have to be considered to effectively capture the perceptual mean-
ing of the sound. Note that fig.1 (a) is illustrated as downward 
STRFs just for consistency. 

2.2. STRFNet 

Constructed STRF has been used as a kernel of the first convolu-
tional layer to tackle several audio-related tasks [22, 23]. We also 
use this method to verify the effectiveness of STRF on SED. In 
fig. 2 (a), the architecture of the baseline model used in this work 
is depicted. Baseline model is composed of six convolution 
blocks in series followed by two Bi-directional gated recurrent 
unit (GRU) layers and two fully connected layers. “ConvBlock” 
in fig. 2 consists of 2D convolutional layer, batch normalization, 
ReLU activation and 2D maxpool. STRFNet architecture is 
shown in fig.2 (b), where STRFConv layer is added in front of 
the baseline model. STRFConv uses 64 different STRFs as con-
volutional layer kernels, where 32 STRFs are for upward direc-
tion modulation and the other 32 STRFs are for downward direc-
tion modulation. Instead of directly training the convolution 

 
Figure 1. STRF examples with (a) varying scales (Ω) and rates (ω), (b) upward and downward direction. 
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Figure 2: Architectures of (a) baseline model, (b) STRFNet and (c) Two-Branch STRFNet (TB-STRFNet). 

kernel as in the conventional convolutional layers, STRFConv 
trains scales and rates corresponding to the channels of the kernel 
and then produce kernels using trained scales and rates, thus it is 
lighter than conventional convolutional layers in terms of the 
number of parameters. In this work, 32 sets of scales and rates 
are trained in STRFConv to construct 32 upward and downward 
sets of STRF. 

2.3. TB-STRFNet 

STRF kernel only extract spectral and temporal modulation from 
the sound, while other characteristics of time-frequency patterns 
within sound would be required for recognition of sound events. 
In addition, STRF kernel has large kernel size of 50 by 48 and 
can capture only monotonic modulation form. To compensate 
such limitations of STRFConv, we propose two-branch model 
composed of STRF branch and baseline branch, and named as 
TB-STRFNet. STRF branch is taken from STRFNet while base-
line branch is taken from the baseline model with additional 2D 
convolutional layer before the CNN structure as shown in fig. 2 
(c).  

Both branches take the identical input which is mel-
spectrogram. The STRF branch captures the neuroscience in-
spired spectro-temporal modulation information from the mel 
spectrogram. On the other hand, baseline branch consists of a 2D 
convolutional layer and six convolution blocks. Since STRF 
branch applies large kernels to extract modulation-related sound 
information, we expect the baseline branch to extract comple-
mentary information using small kernels by focusing on detailed 
time-frequency patterns. Extracted features from two branches 
are concatenated to combine separately extracted information. 
Concatenated feature map would go through the remaining layers 
with the same procedure as the baseline model. 

2.4. STRF with frequency dynamic convolution 

To further improve the performance of STRFNet and TB-
STRFNet, we experimented on application of frequency dynamic 
convolution (FDYConv) on those models. FDYConv is proposed 
to tackle the problem that 2D convolutional layer applies transla-
tional equivariance on the frequency dimension while the fre-
quency dimension is shift-variant [9]. This is also related to 
human auditory system in that it can distinguish frequency-wise 
translation. Thus FDYConv make sense with the idea of making 
SED models function similar to human auditory system. To test 
compatibility of FDYConv with STRFNet, we replaced all con-
volution layers in STRFNet by FDYConv and named as STRF-
FDYNet. In addition, we applied FDYConv on TB-STRFNet to 
further improve the performance. We replaced convolution layers 
by FDYConv in baseline branch only, STRF branch only, and 
both branches of TB-STRFNet and named as TB-STRF-
FDYNet1, TB-STRF-FDYNet2, and TB-STRF-FDYNet3, re-
spectively. FDY replaced only convolution layer in convolution 
blocks for each branch of models, so that first layer of each 
branch is not FDYConv just as in the original implement of 
FDYConv [9]. 

3. EXPERIMENTAL DETAILS 

3.1. Implementation Details 

MAESTRO Real dataset is composed of 49 audio clips with 
duration of 3 to 5 minutes and sampling rate of 44.1 kHz [28]. 
Mel-spectrogram is used as input feature with 8,820 hop length, 
17,640 window length and 64 mel-bin. For training, epoch num-
ber is 150, batch size is 32, mean-square error for loss function 
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and Adam optimizer are used. 5 cross-fold validation setup is 
used for stable overall evaluation. 

3.2. Other SED models for comparison 

For comparison, various models are adopted. DCASE baseline 
model is provided by DCASE Challenge 2023 Task4 subtask B 
baseline [29]. It has simple model architecture with three CNN 
layers, one Bi-directional GRU, followed by two fully connected 
layers. Other than the DCASE baseline model, the models with 
other methods are based on the baseline model in fig. 2 (a). 
Temporal dynamic convolution (TDYConv) [11] and frequency 
dynamic convolution (FDYConv) [9] are dynamic convolution 
models whose CNN kernel is weighted with time-wise attention 
and frequency-wise attention respectively. Each temporal and 
spectral axis-wise attention is extracted from the convolution 
input. TDY-CRNN and FDY-CRNN are applied in this work to 
compare the performance with STRF-based models, as they also 
function similar to human auditory perception and show decent 
performances. For both TDY-CRNN and FDY-CRNN, dynamic 
convolutional layer replaced all convolutional layers of the 
baseline except for the first layer.   

3.3. Evaluation Metrics 

Macro-average F1 score with optimum threshold (F1MO) is used 
for main evaluation metric of DCASE 2023 Task 4 subtask B 
[30, 31]. By finding the best threshold which is most fit to cer-
tain task, the metric can provide more accurate system evalua-
tion and reduce the need of manual threshold optimization. For 
comparison of model performance, the performance of each 
model is averaged by 10 sessions, in that 5 cross-validation 
procedure is performed for one session. 

4. RESULTS AND DISCUSSION 

SED performance of various models discussed in this paper are 
listed Table 1. For performance of single branch models, TDY-
CRNN fails to outperform the baseline model. Since the models 
apply bi-GRU which considers sequential information between 
time frames, TDY-CRNN did not improve much compared to the 
baseline. On the other hand, FDY-CRNN which releases transla-
tional equivariance of frequency dimension showed significant 

improvement. STRFNet which captures the spectro-temporal 
modulation information, performed worse than the baseline. As 
we expected, large kernel size of STRF missed the detailed time-
frequency information and lead to lower performance. However, 
joint application of STRFConv and FDYConv has further im-
proved the performance of FDY-CRNN. Considering that 
STRFConv worsen the performance of baseline while enhance 
the performance of FDY-CRNN, there exists a synergy between 
STRFNet and FDYConv. The synergy seems to be due joint 
application of two methods consistent to principles by human 
auditory system.  

TB-STRFNet which aims to capture detailed time-frequency 
information while extracting spectro-temporal modulation infor-
mation, outperformed the baseline and the other single branch 
models. To verify the effect of increased model size, we con-
structed TB-baseline, which is consist of two baseline branches. 
While TB-baseline has almost the same number of parameters 
with TB-STRFNet, TB-STRFNet outperforms TB-baseline. 
Since TB-baseline outperforms the baseline, increased model size 
has affected the model performance. However, considering that 
application of STRFConv on single branch model has worsened 
performance, positive effect by STRFConv on TB-STRFNet is 
apparent. STRF effectively extracts additive information from the 
mel-spectrogram which is helpful to discriminate the event class 
and its time onset/offset in two branch architecture. In addition, 
we interpret that TB-STRFNet outperforms TB-baseline because 
different role of TB-STRFNet branches efficiently extract the 
various information from the input sound stimulus. Proposed TB-
STRFNet is submitted to DCASE Challenge 2023 Task 4b and 
achieved 4th rank outperforming DCASE baseline by 4.3% [32]. 

All three models with join application of FDYConv and TB-
STRFNet outperformed TB-STRFNet. Since both FDYConv has 
improved both baseline model and STRFNet, it is effective 
whether STRFConv is applied or not. In addition, TB-STRF-
FDYNet2 applying FDYConv on STRF branch performed better 
than TB-STRF-FDYNet1 applying FDYConv on the baseline 
branch. This proves the synergy between STRFConv and FDY-
Conv again, as they perform better when applied together than 
when applied separately. TB-STRF-FDYNet3 performed the best, 
improving the baseline by 6.2%. This again proves that methods 
consistent to human auditory systems are effective on SED and 
using them together even results in great synergy. 

5. CONCLUSION 

In this work, we applied STRF as a convolutional layer kernel on 
SED to build SED model functioning closer to human auditory 
system. While STRFNet performed not as good as the baseline 
model, TB-STRFNet outperformed the baseline and showed the 
effect of extracting spectral and temporal modulation information 
on SED. Furthermore, reflecting frequency-varying perceptual 
property of auditory system, we applied FDYConv together with 
STRF. The superior performance of STRF-FDYNet and TB-
STRF-FDYNet3 proves that a physiologically consistent deep 
learning methods enhance SED performance. For future works, 
we suggest to consider further physiological A1 cell response 
properties. STRF has dynamic property that STRF is known to be 
dependent to input sound stimulus [33]. Thus, we may construct 
the dynamic STRF based model which consider such dynamic 
STRF property. 

Table 1: Performance on various SED models.  

Model Params F1MO(%) 
DCASE baseline [29] 0.38M 42.91 

baseline 2.22M 43.76 
TDY-CRNN 7.01M 43.57 
FDY-CRNN 7.01M 44.06 

STRFNet 2.25M 43.19 
STRF-FDYNet 7.24M 44.33 

TB-baseline 4.08M 44.28 
TB-STRFNet  4.08M 44.75 

TB-STRF-FDYNet1 9.06M 44.81 
TB-STRF-FDYNet2 9.06M 45.16 
TB-STRF-FDYNet3 14.05M 45.55 
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