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ABSTRACT
Knowledge Distillation (KD) is a widespread technique for

compressing the knowledge of large models into more compact
and efficient models. KD has proved to be highly effective in
building well-performing low-complexity Acoustic Scene Classi-
fication (ASC) systems and was used in all the top-ranked sub-
missions to this task of the annual DCASE challenge in the past
three years. There is extensive research available on establishing the
KD process, designing efficient student models, and forming well-
performing teacher ensembles. However, less research has been
conducted on investigating which teacher model attributes are bene-
ficial for low-complexity students. In this work, we try to close this
gap by studying the effects on the student’s performance when using
different teacher network architectures, varying the teacher model
size, training them with different device generalization methods,
and applying different ensembling strategies. The results show that
teacher model sizes, device generalization methods, the ensembling
strategy and the ensemble size are key factors for a well-performing
student network.

Index Terms— Acoustic Scene Classification, Knowledge
Distillation, CP-Mobile, Patchout FaSt Spectrogram Transformer
(PaSST), CP-ResNet

1. INTRODUCTION

The objective of Acoustic Scene Classification (ASC) involves la-
beling an audio clip with a corresponding scene. The DCASE23
challenge’s [1] Low-Complexity Acoustic Scene Classification task
focuses on utilizing the TAU Urban Acoustic Scenes 2022 Mobile
development dataset (TAU22) [2]. This dataset comprises one-
second audio snippets from ten distinct acoustic scenes. In an at-
tempt to make the models deployable on edge devices, a complexity
limit on the models is enforced: models are constrained to have no
more than 128,000 parameters and 30 million multiply-accumulate
operations (MMACs) for the inference of a 1-second audio snip-
pet. Among other model compression techniques such as Quan-
tization [3] and Pruning [4], Knowledge Distillation (KD) [5–7]
proved to be a particularly well-suited technique to improve the per-
formance of a low-complexity model in ASC.

In a standard KD setting, a low-complexity model learns to
mimic the teacher by minimizing a weighted sum of hard label loss
and distillation loss. While the soft targets are usually obtained by
one or multiple possibly complex teacher models, the distillation
loss tries to match the student predictions with the computed soft
targets based on the Kullback-Leibler divergence.

Jung et al. [8] demonstrate that soft targets in a teacher-student
setup benefit the learning process since one-hot labels do not reflect

the blurred decision boundaries between different acoustic scenes.
Knowledge distillation has also been a very popular method in the
DCASE challenge submissions. For example, Kim et al. [9] apply
KD using a pretrained teacher. Further, [10] and [11] employ KD to
train a low-complexity network on the predictions of a more com-
plex one. Schmid et al. [12] use KD to train a low-complexity CNN
on a teacher ensemble consisting of five PaSST [13] models.

To enhance generalization across recording devices, Kim et al.
propose a modified version of MixStyle [14] called Freq-MixStyle
[12, 15]. This method normalizes each frequency band and denor-
malizes it with mixed frequency statistics of two different samples.

Another method for improving the device generalization is De-
vice Impulse Response Augmentation [16] which was introduced
by Morocutti et al. It convolves audio signals with impulse re-
sponses of vintage microphones to increase the recording device
variety in the training phase.

In this work, we study the effects of training a low-complexity
network on the predictions of a single teacher or a teacher ensem-
ble. We experiment with different network architectures, model
sizes and device generalization methods to create the single teacher
model that leads a student to perform best on the validation set.
Additionally, we analyze the effect of combining teacher models
with different network architectures, sizes, or device generalization
methods.

2. NETWORK ARCHITECTURES

We experiment with three different teacher networks that were
shown [17] to perform well as a teacher for the task of ASC.
The architectures consist of two receptive-field regularized [18]
convolutional neural networks (CNNs): CP-ResNet [19] and CP-
Mobile [17], as well as a Transformer model: Patchout faSt Spec-
trogram Transformer (PaSST) [13].

2.1. CP-Mobile

CP-Mobile (CPM) [17] is an efficient architecture optimized for
ASC. This architecture is designed to be less complex than CP-
ResNet by factorizing convolution operations, such as in Mo-
bileNets [20, 21] and EfficientNets [22], while maintaining impor-
tant properties that were shown to be important for ASC tasks, such
as the regularized receptive field [18, 19].

In the following experiments, the student model has the CPM
architecture with the following configuration: 32 base channels, an
expansion rate of 3 and a channels multiplier of 2.3. The details
of the CPM architecture are described in [17]. In short, these at-
tributes control the scale of the network: the base channels repre-
sent the width of the first few blocks of the network; the channels
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multiplier determines the expansion in the number of channels as
the network gets deeper (i.e. the number of channels in the last con-
volutional blocks is the number of channels of the previous blocks
multiplied by channels multiplier); the expansion rate determines
the number of channels in the depthwise convolution. The resulting
model consists of almost 128K parameters and 29 million multiply-
accumulate operations (MMACs).

We choose CPM as a student model since the architecture is de-
signed for low-complexity ASC and has been shown to outperform
CP-ResNet in previous work [17]. In addition, we experiment with
using a scaled-up version of CPM as a teacher model for KD. To
scale up the network, we increase the width via the base-channels
hyperparameter.

2.2. CP-ResNet

CP-ResNet (CPR) [18, 19] is a receptive-field regularized CNN
which has been shown to be very successful for ASC in previous
editions of the DCASE ASC challenge [1, 2, 23, 24]. Therefore, we
also use this network as a teacher model. We use the number of base
channels to scale up the network in order to create teacher models
with different sizes, similar to the procedure outlined for CPM.

2.3. PaSST

The Patchout faSt Spectrogram Transformer (PaSST) [13] is a
complex, self-attention-based model, which is pre-trained on Au-
dioSet [25] and consists of 85M parameters. The pre-trained model
can be fine-tuned to achieve state-of-the-art performances on multi-
ple downstream tasks, including ASC [13]. Additionally, PaSST
models have proven to be excellent teachers for low-complexity
CNNs [12, 26, 27]. Therefore, we also experiment with PaSST as a
teacher model.

3. KNOWLEDGE DISTILLATION

We train our student model on the pre-computed predictions of the
teacher model or teacher ensemble in addition to the one-hot en-
coded labels, similar to [27]. Training the student model on the soft
labels of the teacher (ensemble) results in the student model learn-
ing blurred decision boundaries and establishing important similar-
ity structures between classes. The loss is given in Equation 1 and
consists of the hard label loss Lt and distillation loss Lkd. The la-
bel and distillation loss are weighted using the factor λ. The student
and teacher logits are denoted by zs and zt, while y stands for the
hard labels. τ is a temperature to control the sharpness of the proba-
bility distributions created by the softmax activation δ. Ll indicates
the Cross-Entropy loss and the Kullback Leibler divergence is used
as distillation loss Lkd.

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)) (1)

As suggested in [5], we multiply the distillation loss by τ2 since
the magnitudes of the gradients produced by the soft targets scale
as 1/τ2. This ensures that the relative contributions of the hard and
soft targets remain roughly unchanged if the temperature used for
distillation is modified.

3.1. Experimental Setup

We train the teacher models as well as the student models on the
TAU22 [2] dataset with the shifted crops dataset augmentation de-
scribed in [17]. Regarding Knowledge Distillation, we use the val-
ues of 0.02 and 2 for λ and temperature τ , respectively.

For device generalization (DG) we experiment with Freq-
MixStyle (FMS) [12,15] and Device Impulse Response (DIR) aug-
mentation [16] and the combination thereof. FMS is configured by
two parameters: αfms determines the shape of the Beta distribu-
tion used to randomly draw mixing coefficients, and pfms specifies
the probability of whether it is applied to a batch or not. Similar
to FMS, DIR is guided by a probability pdir that determines the
augmentation strength by specifying the proportion of samples to
augment.

The configurations used for FMS and DIR are adapted for each
architecture. Results in [16] show that PaSST performs best with
αfms = 0.4, pfms = 0.4 and pdir = 0.6 whereas CPR achieves
the highest validation accuracy using αfms = 0.3, pfms = 0.8
and pdir = 0.4. While our experiments found that CPM teachers
perform well using the same configuration as used for CPR, setting
αfms, pfms and pdir to 0.3, 0.4 and 0.6 when training the student
network results in higher validation accuracy. More details about
our experimental setup are reported in [17].

4. SINGLE MODEL TEACHER

In this section, we compare the performance of different teachers
and evaluate the performance of students trained on the predictions
of different teacher models using KD. We experiment with using
a single CPM, CPR or PaSST model as the teacher and a low-
complexity CPM as the student.

4.1. Scaling the Teacher

To investigate the effect of training the student on teachers of differ-
ent complexity, we scale CPM and CPR by increasing the number
of base channels, which modifies the width of the network. We test
the effect of scaling the teacher only on CPM and CPR since we use
a pre-trained PaSST model.

We trained CPM and CPR models in five different complex-
ity configurations such that their number of parameters is approxi-
mately 128K, 450K, 1M, 4M and 8M. Since the number of param-
eters of CPM and CPR does not scale equally when increasing the
base channels, we selected the number of base channels for each
size and architecture individually. We used 32, 56, 88, 168 and 232
base channels for CPR and 32, 64, 96, 184 and 264 base channels
for CPM.

All different configurations are evaluated over three runs and to
ensure that our experiments are independent of each other, we train
one student on each of the three teachers.

Additionally, we apply a combination of Freq-MixStyle and
Device Impulse Response augmentation to all student as well as
all teacher models. From now on, we will refer to the combination
of DIR and FMS as DIRFMS.

Table 1 shows that for the teacher, CPM outperforms CPR
in each complexity configuration. Additionally, even the smallest
variant of CPM achieves a higher validation accuracy than PaSST,
which has several orders of magnitude more parameters.

However, the students trained on CPM perform worse than the
ones trained on CPR for each size of teacher. Furthermore, the stu-
dents trained using PaSST as a teacher outperform the best students
trained on a CPR variant by only 0.05%. While the teacher with
450K parameters works best for CPR, the variant with 128K pa-
rameters makes the best CPM teacher.

In short, the results show that the right scale of a CNN teacher
can improve the performance of the students by more than 1%. Fur-
thermore, smaller CNNs can be better teachers, even if the larger
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CPR CPM PaSST
T S T S T S

Te
ac

he
r

si
ze

128K 60.28 63.94 62.66 63.70 - -
450K 62.05 64.60 62.81 62.48 - -
1M 62.58 63.99 63.92 62.76 - -
4M 62.74 63.51 64.28 62.43 - -
8M 63.28 63.43 64.62 62.83 - -
85M - - - - 62.20 64.65

Table 1: Validation accuracy of different teacher networks, and a
student model trained on these. T and S denote the performance of
the teacher and student, respectively. While the teacher networks
vary in architecture and size, the student model is always a CPM
model with 128k parameters. All results are averages over three
independent runs and the last 4 epochs of training.

teachers outperform the smaller ones. Finally, having a different ar-
chitecture for teacher and student improves the performance of the
student.

4.2. Effect of Device Generalization Methods

Table 2 presents the impact of the device generalization (DG) meth-
ods DIR, FMS and DIRFMS. For studying the effects of these meth-
ods, we use the teacher variations with 128K and 450K parameters
for CPM and CPR, respectively, since these teacher models result
in the best performing student models, as shown in Section 4.1.

CPR CPM PaSST
T S T S T S

Validation Accuracy

DIRFMS 62.05 64.60 62.66 63.70 62.20 64.65
DIR 57.34 62.47 57.23 61.57 61.64 64.39
FMS 60.99 63.40 61.18 63.66 61.08 64.56
NO AUG 54.13 62.74 53.15 62.47 59.39 63.76

Unseen Accuracy

DIRFMS 56.95 60.43 57.92 59.20 58.73 61.03
DIR 49.30 56.74 48.62 55.54 57.91 60.90
FMS 54.94 58.91 54.92 58.76 57.57 61.00
NO AUG 44.75 56.70 43.94 56.21 54.08 59.60

Table 2: Validation accuracy of teacher networks trained using dif-
ferent DG methods, and a student model trained on the correspond-
ing teacher predictions. T and S denote the performance of the
teacher and student, respectively. The CPM teacher has 128K pa-
rameters, the CPR teacher has 450K parameters. While the teacher
network varies in architecture and used DG method, the student is
always a CPM model with 128k parameters trained with DIRFMS.
All results are averages over three independent runs and the last 4
epochs of training.

The results in Table 2 show that FMS, DIR and/or DIRFMS
boost both the performance of the teacher models as well as the per-
formance of the student models significantly. The results show that
there is a clear effect of these methods on the validation accuracy.

Moreover, this effect tends to be even higher on the unseen accu-
racy. Applying DIRFMS results in the best validation and unseen
accuracy, outperforming DIR and FMS. We define unseen accuracy
as the accuracy on the subset of the validation set that consists of
samples of devices not present in the training set. Consistent with
the findings in [16], FMS, DIR and DIRFMS have less effect on the
performance of PaSST, compared to CPR or CPM.

5. ENSEMBLE TEACHER

Previous work [17] shows that training the student on the predic-
tions of multiple teacher networks is a highly effective method to
improve the accuracy of the student in the KD framework. This
effect is even more significant when ensembling different architec-
tures or models trained with different device generalization meth-
ods. In this section, we will experiment with different ensemble
configurations and show their effect on the low-complexity student.
We ensemble different models by averaging their logits.

CPR CPM PaSST

size of teacher 128K 450K 128K 450K 85M

1 teacher 63.94 64.60 63.70 62.48 64.65
3 teacher 64.53 64.36 63.97 62.77 64.81

Table 3: Validation accuracy of student models trained on the
predictions of either one or three teacher models which apply
both Freq-MixStyle and Device Impulse Response augmentation
(DIRFMS). The highest accuracy per architecture and per number
of teacher is marked bold. For CPR and CPM, the teacher models
consist of either 128K or 450K parameters. All results are averages
over three independent runs and the last 4 epochs of training.

5.1. Ensembling Teachers with Identical Training Setup

This section presents experiments about ensembling different mod-
els that use the same training setup but different seeds. More pre-
cisely, we ensemble different models that share the same architec-
ture, complexity and DG methods. The goal is to test if the averaged
logits of multiple teacher models are better soft targets for training
the student model.

Since the results in Table 2 indicate that DIRFMS has the most
positive effect on the students for all teacher architectures, we eval-
uate the performance of students learning from a teacher ensemble
trained with DIRFMS. Additionally, we choose to test the training
of the student on the teacher ensembles with two different complex-
ity configurations of the CPR and CPM teachers. Due to the fact
that CPR performs best with 450K and CPM with 128K parame-
ters, we select these two complexity levels to evaluate the teacher
ensembling on both architectures.

As the results in Table 3 show, the CPR teacher with 128K pa-
rameters outperforms the variant with 450K parameters when using
an ensemble of three teachers. Further, the variant with 128K pa-
rameters also works best for the CPM teacher, outperforming the
450K-parameters variant by 1.2%. When we train the students on
the averaged logits of three PaSST models, the validation accuracy
of the student increases slightly by 0.16%, compared to using only
one PaSST teacher. However, PaSST outperforms the other archi-
tectures, with CPM performing worse than CPR.
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Teacher Ensemble Variations

Teacher Architecture

CPR ✓ ✗ ✗ ✓ ✓ ✗ ✓

CPM ✗ ✓ ✗ ✗ ✓ ✓ ✓

PaSST ✗ ✗ ✓ ✓ ✓ ✓ ✗

Device Generalization Methods

DIR + FMS 64.25 62.35 64.47 - - - -
DIRFMS + DIR 64.21 63.45 64.63 - - - -

DIRFMS 64.53 63.97 64.81 65.19 65.09 65.15 64.66
DIRFMS + FMS 64.74 63.76 64.89 65.81 65.12 64.67 64.67
DIRFMS + DIR + FMS 64.10 63.76 65.16 65.39 65.18 64.85 64.03

Table 4: The accuracy of the student model being trained on a teacher ensemble. The teacher ensembles differ in the combination of
architectures and the combination of DG methods. A mark indicates that three models of the corresponding architecture are included in the
ensemble. All results are averages over three independent runs and the last 4 epochs of training.

5.2. Ensembling Teachers Trained with Different DG Methods

In this section, we experiment with combining models with the
same architecture but trained using different DG methods in order
to create a better teacher ensemble. We choose 128K parameters
as the teacher complexity for CPR and CPM, since this complex-
ity performs best when combining multiple models, as shown in
Table 3. We evaluate the effect of training the student on these
teacher ensembles and compare the results with the performance of
the students trained using the DIRFMS teacher ensemble described
in Section 5.1. All evaluated teacher ensembles contain three mod-
els for each included DG method. This implies that the different
ensembles stated in the left part of Table 4 contain between 3 and 9
models.

The results in Table 4 indicate that including teachers
trained using DIRFMS in the ensemble is essential for ev-
ery architecture, since the ensembles DIRFMS+FMS, DIRFMS
and DIRFMS+DIR+FMS perform best for the CPR, CPM and
PaSST architecture, respectively. Including the DIR teacher
in the DIRFMS+FMS ensemble only increases the performance
of students trained on the predictions of PaSST models. The
best-evaluated ensemble of only one architecture is the PaSST
DIRFMS+DIR+FMS ensemble, increasing the accuracy by 0.35%
compared to the previously best PaSST DIRFMS ensemble.

5.3. Ensembling Teachers with Different Architectures

In this section, we experiment with ensembling different architec-
tures motivated by the assumption that different architectures can
learn different features and aspects of the training data and there-
fore ensembling them would result in a more robust model.

We test each combination of CPR, CPM and PaSST using the
combinations of DG methods, which performed best on single ar-
chitecture ensembles. It is worth noting that the teacher ensemble
size depends on the number of used architectures and DG methods.
It can therefore range from 6 (2 architectures x 1 DG method x 3
models) to 27 (3 architectures x 3 DG methods x 3 models).

The results in Table 4 clearly show that the teacher ensembles
consisting of CPR and PaSST models result in the best-performing
students. Adding CPM models to ensembles of CPR and PaSST
models worsens the performance of the students for all evaluated
DG configurations. More precisely, ensembling CPM and CPR

does not lead to performance improvement, and neither does en-
sembling CPM and PaSST.

Regarding the DG methods, ensembling teacher models trained
with DIRFMS and FMS results in the best student performance for
the CPR and PaSST combination, creating the best-evaluated en-
semble with 65.81% validation accuracy of the student.

6. CONCLUSION

In this work, we show that low-complexity CNNs like the CPM
learn more important features from Transformers or relatively small
CNNs compared to large CNNs when using Knowledge Distilla-
tion. Additionally, we show that applying Device Impulse Re-
sponse (DIR) augmentation, Freq-Mixstyle (FMS) and especially
the combination thereof (DIRFMS) to the teacher models signifi-
cantly boosts the performance of the teachers and the students. The
effect of these DG methods is even more noticeable on the unseen
accuracy, compared to the total validation accuracy. Surprisingly,
it turns out that the performance of the student does not necessar-
ily improve with the scale of the teacher. For example, ensembling
smaller teacher networks can be more beneficial than ensembling
bigger ones. Furthermore, we show that the performance of the stu-
dent improves when the teacher architecture is different than the
student architecture. For example, when using PaSST or CPR to
train CPM. In contrast, the low-complexity CPM student performs
worse when it is trained on any higher complexity variation of the
same architecture. Additionally, the predictions of PaSST and CPR
complement each other, resulting in better student performance. Fi-
nally, using an ensemble of CPR and PaSST trained either using
DIRFMS or FMS results in our best student, which has an accuracy
of 65.81% with 128K parameters and 32 million MACCS, outper-
forming the much larger CPR, CPM and PaSST models.
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