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ABSTRACT

We explore on various attention methods on frequency and channel
dimensions for sound event detection (SED) in order to enhance
performance with minimal increase in computational cost while
leveraging domain knowledge to address the frequency dimension
of audio data. We have introduced frequency dynamic convolution
(FDY conv) in a previous work to release the translational equiv-
ariance issue associated with 2D convolution on the frequency di-
mension of 2D audio data. Although this approach demonstrated
state-of-the-art SED performance, it resulted in a model with 150%
more trainable parameters. To achieve comparable SED perfor-
mance with computationally efficient methods for practicality, we
explore on lighter alternative attention methods. In addition, we
focus on attention methods applied to frequency and channel di-
mensions. Joint application Squeeze-and-excitation (SE) module
and time-frame frequency-wise SE (tfwSE) to apply attention on
both frequency and channel dimensions shows comparable perfor-
mance to SED model with FDY conv with only 2.7% more train-
able parameters compared to the baseline model. In addition, we
performed class-wise comparison of various attention methods to
further discuss various attention methods’ characteristics.

Index Terms— sound event detection, computationally effi-
cient, attention, frequency dimension, channel dimension

1. INTRODUCTION

Sound event detection (SED), which aims to recognize a target
sound event class and corresponding time localization within a
given audio clip, has potential to be applied in various applications
such as automation, robotics and monitoring [1, 2, 3]. In order to
recognize and locate sound events, we need strong pattern recogni-
tion tools. Recent advances in deep learning (DL) methods brought
significant progress in SED [2, 3]. While most works directly ap-
plied DL methods from other domains to SED without modification,
few works adapted DL methods to SED by thoroughly analysing
unique characteristics of audio data and sound events.

Frequency dimension has to be carefully considered when ap-
plying DL methods on audio-related DL applications. It is shown
by previous works that methods considering frequency dimension
significantly improved SED performance [4, 5, 6]. SED has been
heavily relying on convolutional recurrent neural networks (CRNN)
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based architectures [2, 3]. 2D convolution in CRNN assumes shift-
invariance on both time and frequency dimensions thus enforces
translational eqauivariance on both dimensions [4]. However, fre-
quency is a shift-variant dimension where the same pattern sounds
different when translated along the frequency dimension. At the
same time, frequency exhibits loose shift-invariance within short
frequency range thus slight pitch-shift does not harm auditory per-
ception much. Thus frequency dimension is a delicate yet essential
component to be considered for audio domain.

In a previous study, we introduced frequency dynamic convo-
lution (FDY conv) to release translational equivariance by 2D con-
volution on the frequency dimension of 2D audio data to consider
its shift-variant characteristic [4]. While FDY conv showed impres-
sive performance on SED, it added 150% more parameters to the
model. However, in order to apply SED on various real applica-
tions, we might need to implement SED on devices with limited
specifications. Thus, there is a need for computationally efficient
SED methods which is lighter but as competent as current state-of-
the-art models. To address this limitation and improve the practical-
ity of SED models, we explore various lighter attention methods to
enhance SED performance more efficiently. We aim to achieve this
by addressing the frequency and channel dimensions, since those
are two emphasized dimensions in audio domain [4, 6, 7]. Thus we
experiment with various attention methods on frequency and chan-
nel dimensions. The main contributions of this work are:

1. We explore various alternative attention methods which are
computationally efficient for practicality, while considering
channel and frequency dimensions to consider unique char-
acteristics of audio domain.

2. Joint application of squeeze-and-excitation (SE) and pro-
posed time-frame frequency-wise SE (tfwSE) to re-weight
both channel and frequency dimensions shows comparable
performance to state-of-the-art method while only adding
model parameters by 2.7%.

3. We discuss the characteristics of various attention methods
on SED to provide further insights for practical implementa-
tion.

The official implementation code is available on GitHub'.

2. METHODS

While frequency dynamic convolution (FDY conv) showed state-
of-the-art performance and have been widely adopted on SED
[6, 8,9, 10, 11, 12], it adds considerable number of trainable pa-
rameters to the networks due to multiple basis kernels [4, 13].

Thttps://github.com/frednam93/lightSED
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Figure 1: An illustration of frequency-wise Squeeze-Excitation.

Thus there remains a need for sufficiently well-performing model
with fewer parameters for practical applications. Since FDY conv’s
strength comes from attention mechanism which selectively focus
on important elements of the input, we explore other alternative at-
tention methods to achieve comparable performance.

2.1. Variants of Squeeze-and-Excitation

One alternative computationally efficient attention method widely
used is squeeze-and-excitation (SE) [14]. It has been widely ap-
plied to various CNN-based models for its light yet powerful perfor-
mance. SE module is composed of squeeze operation and excitation
operation. Squeeze operation averages output of 2D convolution on
two dimensions except channel to obtain squeezed intermediate rep-
resentation. Excitation operation applies two successive fully con-
nected (FC) layers to obtain attention weights representing relative
importance of each channel. The channels of convolution output is
re-weighted by multiplying the attention weight [14]. When applied
to 2D audio data, squeeze operation is applied to the convolution
output by:

F T
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where z. is intermediate representation after squeeze operation on
c-th channel and z.y; is the output by preceding 2D convolution
with channel index c, frequency index f and time index t. F' and T'
are frequency and time dimension sizes of 2D convolution output.
The excitation operation is composed of two FC layers as follows:

s = 0(W25(W1z)) 2

where s is attention weight, also known as scale, which is multi-
plied to the output of preceding convolution. z is the intermediate
representation vector. Both span channel dimension of size C. Wy
and W are FC layers, 0 refers to ReLU activation and o refers to
sigmoid function.

To apply attention-based re-weighting on frequency dimension,
Thienpondt er al. proposed frequency-wise Squeeze-Excitation
(fwSE) which applies SE on frequency dimension instead [15].
Thus, instead of pooling time and frequency dimensions, fwSE
pools channel and time dimensions during squeeze operation as fol-

lows:
1 c T
= g 3 Y e ®

c=1t=1
The following excitation operation is the same as (2), just that two
FC layers are applied on frequency dimensions instead. Then, ob-
tained attention weight for each frequency bin is multiplied to corre-
sponding frequency components of the preceding convolution out-
put. Fig. 1 illustrates the fwSE mechanism.

21-22 September 2023, Tampere, Finland

Squeeze Excitation
|
avg pool > H
on channel ReLlI slgmau:l i
i
Fx1x1 —><1><1 inlxl
H

Figure 2: An illustration of time-frame frequency-wise Squeeze-
Excitation on one time frame. tfwSE applies this procedure for ev-
ery time frames.

Since frequency component varies over time, we propose time-
frame fwSE (tfwSE) which applies fwSE on every time frames of
input instead of time-averaged input. Thus, tftwSE only pools chan-
nel dimension in squeeze operation and then applies excitation op-
eration on every time frames. The squeeze operation on time frame
t can be expressed by following equation:

1 C
Zft = 6 chft )
c=1

where zy; is intermediate representation after squeeze operation.
Then excitation is applied on frequency dimension on each time
frame as follows:

st = 0(W28(W1zt)) ©)

where s; is scale on time frame ¢ and z; is the intermediate repre-
sentation vector corresponding to time frame ¢, both spanning chan-
nel dimension. Opposed to fwSE by Thienpondt et al. which ap-
plies frequency-wise attention weights evenly over time-dimension
by referring to representative averaged information of the con-
volution output, proposed tfwSE applies frequency-wise attention
weights for each time frame by referring to each individual con-
tents within corresponding time frame [15]. While this could in-
crease computation of excitation operator (fwSE applies excitation
on one z per audio clip, while tftwSE applies excitation on 1" z¢ per
audio clip), it could help generalizing excitation operation on many
time frames. The mechanism of tfwSE is illustrated in Fig. 2. This
method was previously applied by our submission on detection and
classification of acoustic scenes and events (DCASE) 2022 chal-
lenge task 3 as well, showing its performance [16]. Similarly, we
could apply original SE on each time frame as well. We named it as
time-frame SE (tSE). Note that this is not a time-wise version of SE
like fwSE, as we do not apply SE by pooling channel and frequency
dimensions during squeeze to leave time dimension. Instead, we
pool frequency dimension only and apply SE on every time frame
in similar way shown in Fig. 2.

2.2. Channel-Frequency Attention Methods

Li et al. [7] proposed C2D-Att for speaker verification which ap-
plies 2D convolution to obtain attention weights for both channel
and frequency dimensions simultaneously. C2D-Att first pools time
dimension by averaging, and then apply two consecutive 2D con-
volution modules to channel and frequency dimensions by intro-
ducing additional channel dimension which is increased to 8 and
then back to 1. This results in channel-frequency attention weights
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which are multiplied to channel and frequency dimensions of pre-
ceding 2D convolution output. C2D-Att improves the speaker ver-
ification performance compared to fwSE by re-weighting channel
and frequency dimensions simultaneously [7].

However, considering that channel dimension in CNN is per-
mutable dimension where the convolution module’s advantage cap-
turing locality does not matter, it needs further verification if 2D
convolution is the best option to apply channel and frequency at-
tention on CNN. While CNN in C2D-Att applies 2D convolution
kernel which finds local pattern across frequency and channel di-
mension, locality matters on frequency dimension only. Therefore,
we experiment on joint application of attention on frequency and
channel separately, without considering the locality of channel di-
mension using SE. To apply SE on two dimensions independently,
we apply SE and tfwSE in series.

3. EXPERIMENTAL SETUPS

3.1. Model Architecture

The model architecture is based on CRNN model, composed of
seven convolution layers followed by two bidirectional gated re-
current unit (GRU) then a FC layer. On the strong predictions, we
apply class-wise median filter as post processing. In this work, the
model using FDY conv replaced all 2D convolution except the first
one. SE and C2D-Att modules are inserted after the activation and
before the average pooling within the convolution blocks. They are
applied on all convolution layers except the last layer in this work.
It is because Hu et al. has shown that SE module applies almost
constant attention weights at the last layer thus it merely affects the
model [14].

3.2. Implementation Details

The overall implementation details follow the previous work [4],
which could be referred on the official implementation code of
which link is provided in the section 1. The experiments in this work
are based on domestic environment sound event detection (DESED)
dataset [3]. DESED is composed of synthesized strongly labeled
dataset, real weakly labeled dataset and real unlabeled dataset for
training and validation. For test, real validation dataset, which is
strongly labeled, is used. We do not use any external dataset. We
trained each model with single NVIDIA RTX Titan GPU. For the
results listed in this paper, the metrics are based on the best score
among total 24 models from 12 separate training runs.

DESED is composed of 10 second audio data with 16 kHz sam-
pling rate. We extract mel spectrogram as the input feature for SED
model. The settings for mel spectrograms are as follows: 2048
points for number of fft, 256 points for hop length, Hamming win-
dow for windowing function, and 128 mel bins. Data augmenta-
tion methods applied are frame shift [3], mixup [17], time masking
[18] and FilterAugment [5]. Applying heavy data augmentation is
crucial for training SED where real strongly labeled data is scarce
[19]. As we use three levels of datasets, strongly labeled/weakly
labeled/unlabeled dataset, we apply mean teacher to leverage unla-
beled dataset [3, 20]. We apply FilterAugment with different ran-
dom parameters on student and teacher model to train SED model
robust against FilterAugment.
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Table 1: Performance and computational cost comparison between
the baseline, frequency dynamic convolution and various frequency
and channel attention methods on DESED real validation dataset.

models params time PSDS1 PSDS2 CB-F1
baseline 4.428M 3h34m | 0409 0.641  0.520
+FDYconv | 11.061IM 6h08m | 0.446  0.673  0.525
+SE 4.537M 3h49m | 0435 0.654 0525
+SE 4.537M 3h52m | 0416  0.643  0.526
+fwSE 4439M 3h49m | 0411  0.634  0.522
+tfwSE 4.439M 3h50m | 0.415  0.638  0.509
+C2D-Att 4429M 3h53m | 0434  0.659  0.539
+fwSE +SE | 4.548M 4h04m | 0.437  0.650  0.532
+SE +tfwSE | 4.548M 4h06m | 0.442  0.657  0.526

3.3. Evaluation Metrics

Main evaluation metric employed in this study is the polyphonic
sound detection score (PSDS) [21], which considers the intersec-
tion between predictions and ground truth to decide if prediction
is correct. PSDS also accounts for cross triggers induced by other
sound events in the audio. PSDS utilizes area under curve (AUC)
- receiver operating characteristic (ROC) curves, enabling compari-
son of sound event detection (SED) performances without the need
for threshold optimization. In DCASE Challenge 2021, 2022 and
2023 Task 4, two variations of PSDS (PSDS1 and PSDS2) are uti-
lized to evaluate SED systems [3]. PSDS1 places emphasis on pre-
cise time localization by limiting tolerance for intersection criteria,
while PSDS?2 prioritizes accurate classification by penalizing cross
triggers more. Additionally, we use collar-base F1 score (CB-F1)
[22] for class-wise performance comparison, as PSDS cannot be
obtained for single sound event. Both PSDS and CB-F1 are ranged
between zero and one, and value closer to one indicates better SED
performance.

4. RESULTS AND DISCUSSION

4.1. Comparison of Attention Modules

Table 1 shows performance and computational cost of SED mod-
els with various frequency-wise and channel-wise attention meth-
ods. Computational costs are described by the number of trainable
parameters representing model size and training time representing
computational efficiency. Note that we aim to achieve computa-
tional efficiency as close to the baseline as possible and much less
than FDY conv. For comparison, SED model with FDY conv is
listed in table 1 as well. Note that the results for FDY-CRNN dif-
fer from the results in previous paper due to minor changes in set-
ting. When we compare the performance of SED model with SE
variants, we can observe that conventional SE definitely outper-
forms the baseline. On the other hand, fwSE only slightly out-
perform the baseline for PSDS1 while their PSDS2 is worse than
the baseline. Considering that SE is proposed to re-weight channel
dimension and each channel is independent from each other while
frequency depends on other frequency bins, re-weighting appears
to be more effective on channel dimension than on frequency di-
mension. In addition, considering the parameter increase in the
model, SE has increased model size significantly more thus it in-
volved more computational resource to the model. While SE has
increased model size by ~2.5%, fwSE has increased the model size
by ~0.25%. Proposed tfwSE is slightly better than fwSE in terms
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Figure 3: Box-plot of class-wise collar-base F1 scores by multiple models on DESED real validation dataset.

of both PSDS1 and PSDS2. On the other hand, tSE only slightly
outperforms the baseline and performs worse than SE. While re-
weighting frequency dimension on each time frame has improved
frame-wise sound event classification of SED, this effect seems to
be not so significant. One explanation to this could be the effect
of bi-GRU which processes time-varying information. Likewise,
temporal dynamic convolution which applies time-adaptive kernel
performed worse than FDY conv on SED [23, 4]. On the other hand,
tSE failed to improve SE. Re-weighting a dimension separately on
each time frame was not as effective on channel dimension.

Results for methods applying attention simultaneously on chan-
nel and frequency dimensions, C2D-Att and joint applications of SE
and tfwSE, are also listed in Table 1. C2D-Att shows descent perfor-
mance comparable to SE, with less parameters compared to SE. In
addition, joint application of SE followed by tfwSE shows improve-
ment over SE. While joint applicatoin of SE after tfwSE shows sim-
ilar performance to SE, we could still conclude that application of
attention methods simultaneously on channel and frequency dimen-
sions are effective. Furthermore, the combination of SE and tfwSE
achieves comparable results to FDY conv in terms of PSDS1, reach-
ing 99.1% of the PSDS1 by the model with FDY conv. Considering
that high PSDS2 scores can be easily achieved using weakSED [19],
we could regard that this model performs nearly as well as model
with FDY conv. An interesting discovery is that while tfwSE de-
grades PSDS?2 for the baseline model, the joint application of tftwSE
after SE enhances PSDS2 compared to the model with SE alone.
Moreover, considering that SE + tfwSE outperforms C2D-Att for
PSDS1, 2D convolution considering locality of 2-dimensional pat-
terns along frequency-channel dimensions is not as effective as sep-
arate consideration of channel and frequency dimensions. However,
C2D-Att has advantage over SE + tfwSE in terms of the number of
parameters which is increased by very small amount.

4.2. Class-wise Performance Comparison

In Fig. 3, class-wise collar-based F1 scores on multiple models are
shown as box-plot. Each box-plot is composed of class-wise F1
scores by 24 models from 12 separate training runs. Consistent to
table 1, SE performs better than fwSE and tfwSE on many classes

in Fig. 3 as well. SE performed better than fwSE and tfwSE did
on alarm/bell ringing, cat, dish, dog and speech while it performed
worse on electric shaver, frying and vacuum cleaner. It seems that
SE is stronger on transient and non-stationary sound events while it
is weaker on quasi-stationary sound events, similar to FDY conv
[4]. That is to say, while fwSE and tfwSE re-weight frequency
dimension to address frequency dimension, they are stronger on
quasi-stationary sound events than on non-stationary sound events.
SE + tfwSE shows similar tendency with SE, but slightly better
performance in general. Thus SE + tfwSE perform relatively bet-
ter on non-stationary sound events and relatively worse on quasi-
stationary sound events as well. C2D-Att also shows similar ten-
dency with SE but it shows better performance on electric shaver
and vacuum cleaner. Note that PSDS is an intersection-based score
while the box-plots are based on collar-based score, there are slight
discrepancy between table 1 and Fig. 3.

5. CONCLUSION

In conclusion, we experimented on various frequency and channel
attention methods to enhance SED performance while minimizing
computational cost. The study addressed the challenge of effec-
tively addressing the frequency dimension of audio data by leverag-
ing attention methods. The attention methods demonstrated com-
parable performance to the previous approach of FDY conv, while
reducing the computational cost and improving practicality. In addi-
tion, we performed class-wise performance of the attention methods
to further analyze the characteristics of SED models with different
attention methods. Future research could aim to optimize the pro-
posed attention methods by applying them jointly with FDY conv
either to push the performance even more or to find balance between
computational cost and the performance.
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