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ABSTRACT 

Machine learning methods, and deep networks in particular, often 

underperform on data which lies outside the training distribution. 

Changes to the data distributions (known as domain shift) are par-

ticularly prevalent in bioacoustics, where many external factors 

can vary between datasets, although the effects of this are often not 

properly considered. This paper presents a benchmark for out of 

distribution (OOD) performance based on the detection of hump-

back whales in underwater acoustic data. Several humpback whale 

detectors from the literature are implemented as baselines, along 

with our own detector based on a convolutional neural network 

(CNN). Then, a set of unsupervised domain adaptation (UDA) al-

gorithms are compared. Results show that UDA can significantly 

improve OOD performance when few distinct sources of training 

data are available. However, this is not a substitute for better data, 

as negative transfer (where the adapted models actually perform 

worse) is commonly observed. On the other hand, we find that 

training on a variety of distinct sources of data (at least 6) is suffi-

cient to allow models to generalise OOD, without the need for ad-

vanced UDA algorithms. This allows our model to outperform all 

the baseline detectors we test, despite having 10,000 times fewer 

parameters and 100,000 times less training data than the next-best 

model. 

Index Terms— Unsupervised domain adaptation, domain 

shift, passive acoustic monitoring, humpback whale detection 

1. INTRODUCTION 

Passive acoustic monitoring (PAM) forms a major part of marine 

mammal conservation. Acoustic surveys are an effective and non-

invasive means to further our understanding of species-wise geo-

graphic distributions, migration patterns and feeding grounds, 

monitor ecosystem health, and help to mitigate the impacts of hu-

man activity. Automated analysis of survey data can improve our 

ability to achieve these goals, whilst substantially reducing the 

manual effort required [1]. 

An ideal solution to this end would be an off-the-shelf tool 

which can be easily deployed on any new data and identify all the 

vocalising species present (and indeed, any other relevant acoustic 

event). We argue a major obstacle exists to achieving this sort of 

generalisation ability that particularly affects PAM, but is seldom 

properly considered. This is the fact that dataset biases [2] in PAM 

are unusually large compared to other areas of machine learning 

research (consider, for example, ImageNet [3]: sourced by 
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trawling images from the Internet, this may be a more representa-

tive sample of the “set of all possible images” for which it is a 

surrogate). This increases the likelihood of a mismatch between 

the data distributions of a model’s training set and the data it then 

encounters when deployed (known as domain shift), violating the 

i.i.d. assumption and potentially causing significant reductions in 

performance on new data. 

We support the view that shortcut solutions, in which the 

training distribution contains spurious correlations between clas-

ses which do not transfer to new data, are the primary cause of 

shift-induced performance drops in real-world problems [4]. If 

these patterns have lower descriptive complexity than the intended 

solution, models will preferentially use them to “cheat” on a task. 

This is a significant complication, as the learning bias for simpler 

solutions is a huge part (but not all) of what makes generalisation 

possible in the first place (in particular, it helps prevent overfitting). 

Although a form of data leakage, the introduction of shortcut so-

lutions is oftentimes simply unavoidable when constructing da-

tasets, so we believe these are better thought of as an integral part 

of the learning problem, rather than mere developer oversight. 

Thus, our first aim is to design experiments that create more 

realistic testing scenarios for PAM algorithms. We can do this by 

ensuring the training and test sets never contain any domain over-

lap, to better mimic the distributional shifts which may occur “in 

the wild” (we call this the OOD testing setup). 

What exactly constitutes a “domain” in this context we keep 

deliberately abstract; the primary aim is to confine any covariate 

which may cause shortcuts to a single domain. For example, in one 

data source we use [5], separate tapes are often digitised into a 

single master recording, so these are considered a single domain 

even if the original tapes were collected in different locations or 

years. As we are only testing on OOD samples, the fact that some 

domains have examples collected in different conditions, resulting 

in shortcuts within a single domain, is inconsequential (we also 

argue this happens unavoidably anyway). 

Our second aim is to identify best practices for maximising 

OOD performance in these scenarios. Unsupervised domain adap-

tation (UDA) has previously been used to tackle domain shift 

across many areas of wildlife monitoring [6], including PAM [7], 

[8]. For marine mammal PAM, domain shifts have been shown to 

result in reduced performance [9], and basic supervised finetuning 

has been used to adapt models to new environments [10]. However, 

to our knowledge, UDA is unexplored in this context. Thus, in this 

paper, a range of UDA algorithms from the literature are applied 

to a test problem of humpback whale detection. 

The UDA literature is dominated by the distribution align-

ment approach, which aims to minimise the distance between the 
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feature distributions of the source and target domains. The crux of 

this approach is finding how to estimate this distance reliably using 

only samples from the distributions. Two main approaches exist: 

kernel methods, which embed the distributions in a reproducing 

kernel Hilbert space (RKHS) [11]–[15]; and adversarial training, 

pioneered by [16] and the current basis for practically all state-of-

the-art methods. Various extensions to the original “domain adver-

sarial neural network” (DANN) formulation have followed the 

better-known literature on generative adversarial networks, such 

as with the introduction of the cycle-consistency loss [17], condi-

tional adversarial training [18] and the Wasserstein objective [19]. 

As a final note, we call attention to subsequent analyses of 

existing UDA (and, more broadly, domain generalisation) algo-

rithms in new contexts, on additional, perhaps more realistic, da-

tasets, or averaged across many tasks, which have failed to repro-

duce or report much-reduced benefits compared to their original 

publications [6], [8], [20], [21]. Thus, we also consider that testing 

existing algorithms on new data helps contribute to the bigger pic-

ture of how effective or useful these methods actually are. 
In summary, in this paper, we compare 8 UDA algorithms on 

a novel benchmark of OOD humpback whale detection. We also 

analyse the effect of varying the number of domains used to train 

the base model. 

2. DATA 

Humpback whale (Megaptera novaeangliae) calls are perhaps the 

most studied of all marine mammal vocalisations, and also what 

non-biologists usually mean when they talk about “whale song”. 

The complex nature of the song, its population-level variability, 

and the fact that humpbacks are found in a wide range of environ-

ments all over the world make for an attractive (i.e., challenging) 

OOD problem. Additionally, the large body of previous work 

means many acoustic datasets already exist online and there are 

several well-established baselines to compare our approach to. 

We construct a dataset consisting of approximately 100 

minutes of audio, labelled as either humpback whale (HW) or non-

humpback whale (NHW), from 13 distinct sources. Most of these 

sources already contain both HW and NHW examples, although 

some have only a single class; these are paired together so that 

every domain has examples from both classes, for a total of 9 do-

mains. 

Most data was downloaded from freely available sources 

online: the Watkins Marine Mammal Sound Database (which in-

cludes locations in the Caribbean, North Atlantic and Antarctica) 

[5], the Pacific Islands Passive Acoustic Network [22], the Aus-

tralian National Mooring Network [23], the Hawaiian Islands Ce-

tacean and Ecosystem Assessment Survey [24] and moby-

sound.org; the remaining data was recorded in Madagascar in an 

in-house collection project [25]. 

Samples were handpicked to create a diverse, representative, 

and challenging learning problem, covering a wide range of non-

target underwater acoustic events, geographic locations, recording 

methods and environments. All audio was resampled to 8 kHz, alt-

hough two domains have original sample rates of 4 and 6 kHz, so 

do not contain higher-frequency information – we just consider 

this an additional characteristic of the learning problem to be over-

come. Some exemplar spectrograms are shown in Figure 1. 

We use the same audio pre-processing pipeline as Allen et al. 

[26]: mel spectrograms are generated using 100 ms FFT windows  

 

 

Figure 1: Some exemplar spectrograms of sounds in the dataset (4 

kHz bandwidth, time axis scales variable). Top row: sperm whale 

clicks, pilot whale clicks, seal vocalisations. Second row: minke 

whale boings, right whale calls in strong vessel noise, electrical 

interference. Third row: dolphin whistles, dolphin creaks, right 

whale calls. Bottom row: three humpback whale calls. 

 

 

Figure 2: Total number of spectrogram images in the dataset, by 

class and domain. 

 

with 50% overlap, normalised with per-channel energy normalisa-

tion [27], then split into 3.92 s analysis frames with 50% overlap. 

This results in 3,150 total spectrogram images, measuring 64 by 

128 pixels. The number of images is broken down by class and 

domain in Figure 2. 

Extracting a single value from the literature for what consti-

tutes “acceptable” performance for this task is difficult. Helble et 

al. [28] state that any automated detector should perform at or 

above the level of a trained human analyst, although even this 

benchmark varies greatly based on the call’s SNR, the nature of 

the background noise, as well as the human in question. However, 

based on values in [28], and without wishing to get too lost in the 

details, we consider a balanced accuracy of 87% to be the bare 

minimum required for this task, and anything above 90% to be 

good. 
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3. DETECTORS 

A simple CNN is designed with 4 convolutional layers and one 

dense layer. The convolutional layers each have 3 by 3 kernels, (2, 

2) stride, 16 filters and RELU activations, with 7,154 trainable pa-

rameters total. Batch normalisation was found in testing to deteri-

orate OOD performance, reproducing findings in the literature 

[20], so is not used. Training is performed using the Adam opti-

miser with an initial learning rate of 0.001 and a batch size of 32, 

for 500 iterations. 

In addition to empirical risk minimization (ERM) (that is, the 

standard training paradigm with no adaptation), 8 UDA algorithms 

are compared: 

• Principal component analysis (PCA) 

• Correlation alignment (CORAL) [29] 

• Geodesic flow kernel (GFK) [30] 

• Transfer component analysis (TCA) [11] 

• Joint distribution alignment (JDA) [12] 

• Transfer joint matching (TJM) [13] 

• Manifold embedded distribution alignment (MEDA) [14] 

• Scatter component analysis (SCA) [15] 

 

The CNN is first trained normally on the source domain data. The 

UDA algorithms are then applied to the activations of the final 

convolutional layer. Finally, a new dense layer is trained on the 

transformed source domain features. For the methods based on di-

mensionality reduction (all but CORAL), the output dimension is 

set to 8. The whole process is repeated 5 times to reduce the influ-

ence of parameter initialisation and provide a measure of the un-

certainty for the results. 

In addition to the shallow UDA algorithms listed above, var-

ious types of deep adversarial UDA [16], [18], [19] were also at-

tempted, but failed to work, and are not included in these results. 

Other than the notorious difficulties that come with adversarial 

training (e.g., mode collapse), we also suspect that these methods 

require larger amounts of data than is available in our application, 

which may explain why they failed in this case. 

3.1. Baselines 

We also implement 3 baseline detectors for this task: 

1) Allen et al. [26], a ResNet-50 [31] architecture (25.6 M 

parameters) trained on 187,000 hours of data from a single PAM 

program [22]. The decision threshold is set to the average of all the 

optimal thresholds stated in the paper (a different threshold is used 

per site), at 0.13. One domain of our dataset contains data overlap 

with the training set for this model, so we do not include it when 

calculating the average test accuracy for this baseline. 

2) YAMNet [32], a MobileNet-V1 [33] architecture (3.7 M 

parameters) trained on AudioSet [34], a broad ontology of 527 

classes of audio events drawn from YouTube. In particular, we are 

counting detections of the class “Whale vocalisation”. The training 

data for this class consisted of around 20 minutes of audio from 

129 videos, most of which upon inspection are humpback whales. 

3) Template matching, via cross-correlation of spectrograms 

[35]. For each test sample, a 2D correlation is performed with each 

humpback call training sample and the highest correlation value is 

taken as the recognition score. The nontarget training samples are 

unused. The decision threshold is chosen based on tests on a held-

out subset of training data, and is set to 0.2. 

 

Figure 3: Average balanced accuracy across all domains for each 

algorithm. Error bars denote standard error in the mean. 

4. RESULTS 

First, the algorithms and baselines are compared using leave-one-

domain-out cross-validation – that is, the model is trained using 

data from all but one domain at a time. The performance measure 

used is balanced accuracy, equal to the mean of the true positive 

rate and true negative rate, and averaged across all domains. The 

results are shown in Figure 3, where the error bars denote standard 

error in the mean across the repeats (note, the baselines do not have 

error bars). 

Our tests show that no UDA algorithm exceeds ERM by a 

significant margin – at most 0.2 percentage points for MEDA. This 

reproduces recent findings on OOD generalisation from the litera-

ture [6], [8], [20], [21] – where the ERM baseline has been de-

scribed as “frustratingly strong” [20]. It is clear that, in this case, 

the diversity of the training data makes a far larger difference than 

the learning algorithm, with our best models significantly outper-

forming the Allen et al. [26] baseline, despite having 10,000 times 

fewer parameters, 100,000 times less training data and no pre-

trained backbone. A total of 4 algorithms, including ERM, exceed 

the 87% accuracy criterion. Template matching also performs sur-

prisingly well, although this is rather dependent on the domain be-

ing tested. 

What is perhaps most striking is how often UDA actually re-

duces performance when it is applied – a phenomenon known as 

negative transfer [36]. Some algorithms completely destroy the 

model’s predictive power (e.g., JDA) and every algorithm under-

performs ERM in at least one domain. This behaviour has been 

observed consistently throughout our work on UDA – not least for 

the adversarial methods. We suspect that a bias exists in com-

monly used UDA benchmarks which may, in particular, explain 

why our application of UDA fails to reproduce the massive im-

provements on ERM often seen elsewhere. This is that the distri-

bution alignment is often performed on features from a pretrained 

backbone (usually ResNet-50) which has already “seen” target do-

main samples. The biased feature distributions then make the 

alignment task far easier than if no such pretraining is available. 

Otherwise, the phenomenon of modal misalignment (also called 

false alignment [36], essentially analogous to overfitting) is far 
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more prevalent. Extending the current UDA setup (where all train-

ing domains are pooled together and considered a single “source” 

domain) to multi-source UDA has previously been proposed to al-

leviate this difficulty [36], and will be investigated in future work. 

4.1. How many training domains are needed? 

The previous section showed that, given an abundance of training 

domains, no UDA algorithm significantly outperforms ERM. 

However, the question arises: when training domains are limited 

(as can easily happen in PAM, particularly for rare species), can 

UDA compensate for the lack of diversity in the training data? 

In this section, the number of training domains is varied from 

1 to 8. The domains that are not used for training are used for val-

idation. This is done across at least 3 cross-validation folds, subject 

to the training set being large enough (we use a cut-off of at least 

500 instances). The average balanced accuracy across all valida-

tion folds and domains, along with standard errors, is shown in 

Figure 4. 

It can be seen that UDA is increasingly beneficial as fewer 

training domains become available. With a single training domain, 

SCA provides 14 percentage points improvement over ERM, alt-

hough it is not a complete substitute for better data. Having at least 

6 training domains appears to be a necessary and sufficient condi-

tion for achieving maximal performance on this dataset: it is the 

point where the performance of most algorithms no longer in-

creases, as well as the point where UDA no longer significantly 

improves on ERM. 

The fact that OOD accuracy does not clearly increase mono-

tonically with the number of training domains (for example, there 

is a definite drop for most algorithms in going from 4 to 5 domains) 

suggests that, as found in [37], the design of the dataset, including 

the relative abundance of each domain, is an important factor, and 

naively combining as much data as possible may not be the best 

strategy. This will be investigated further in future work. 

5. CONCLUSION 

This paper presented a novel benchmark for OOD generalisation, 

namely the cross-dataset detection of humpback whales in PAM 

data. A total of 8 UDA algorithms, applied to a simple CNN de-

tector, were tested on this benchmark, as well as 3 existing base-

line detectors. It was shown that large domain shifts exist between 

data from different PAM projects, resulting in significant under-

performance OOD if training data from only one domain is used. 

However, training on a variety of distinct sources of data (at least 

6) is sufficient to allow models to generalise OOD, without the 

need for advanced algorithms. In cases where limited training do-

mains are available, UDA can be used to recover a large part of 

the shift-induced performance drop. 

Although some algorithms may exceed ERM on average, no 

algorithm consistently outperforms ERM every time, highlighting 

the challenges still faced in achieving reliable, trustworthy OOD 

generalisation. Being able to predict which algorithms will work 

in a particular domain would be a significant step towards achiev-

ing this goal – for example, the best model could then be dis-

patched automatically using a specialty-aware ensemble [38]. As 

of yet, no pattern appears to exist, although this will be investi-

gated further in future work. 
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