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ABSTRACT

This work presents a text-to-audio-retrieval system based on pre-
trained text and spectrogram transformers. Our method projects
recordings and textual descriptions into a shared audio-caption
space in which related examples from different modalities are close.
Through a systematic analysis, we examine how each component of
the system influences retrieval performance. As a result, we iden-
tify two key components that play a crucial role in driving perfor-
mance: the self-attention-based audio encoder for audio embedding
and the utilization of additional human-generated and synthetic data
sets during pre-training. We further experimented with augmenting
ClothoV2 captions with available keywords to increase their vari-
ety; however, this only led to marginal improvements. Our system
ranked first in the 2023’s DCASE Challenge, and it outperforms
the current state of the art on the ClothoV2 benchmark by 5.6 pp.
mAP@10.

Index Terms— Natural-Language-Based Audio Retrieval,
PaSST, ChatGPT

1. INTRODUCTION

Natural-language-based audio retrieval revolves around ranking au-
dio recordings based on their relatedness to textual descriptions.
Current state-of-the-art methods in this domain are based on the
dual-encoder approach which converts both recordings and textual
descriptions into high-level representations and then aligns them
within a shared audio-caption space. The ranking of candidate au-
dios is carried out by measuring their distance to the textual de-
scriptions in the shared embedding space. The dual-encoder setup
has been widely adopted in audio retrieval systems [1–4], because
it permits fast ranking and the use of pre-trained audio and text em-
bedding models. CNN architectures pre-trained on AudioSet [5]
are the most common audio encoders and large transformer mod-
els, such as BERT [6] and RoBERTa [7], are the most popular text
encoders. Recently, Mei et al. [8] managed to set a new state-of-
the-art performance on ClothoV2 [9] by introducing WavCaps [8],
a large dataset with synthetic captions.

In this work, we elaborate on our findings in the context of sub-
task 6b of the 2023 DCASE challenge, which is concerned with
natural-language-based audio retrieval. Our method is also based on
the dual-encoder method but differs from previous methods in three
central aspects: firstly, we use an audio spectrogram transformer
called PaSST [10] instead of CNN14 [5] for audio embedding be-
cause PaSST outperforms CNN14 on AudioSet [11] and other rel-
evant audio benchmarks [12]. PaSST employs Patchout [10] dur-
ing training, which increases training speed and memory efficiency

while at the same time acting as a regularizer. Swapping CNN14
for PaSST improves the retrieval performance significantly, as we
will show in Section 3.3. Secondly, we pre-train our models on Au-
dioCaps [13] and WavCaps [8], two large audio captioning datasets
with human-generated and synthetic captions, to alleviate the data
scarcity problem. Using these large datasets to pre-train the mod-
els results in significantly better retrieval performance, as we will
show in Section 3.1. And thirdly, we take advantage of the avail-
able metadata associated with each audio recording and augmented
the captions during training by generating additional captions using
the available keywords and the GPT3.5-turbo API, also known as
ChatGPT. This augmentation method successfully reduces overfit-
ting during fine-tuning but only results in a minor performance im-
provement (see Section 3.5). Our implementation and the keyword-
augmented captions are available in our GitHub repository1.

2. METHOD

Our model uses separate audio and caption embedding networks,
denoted as ϕa(·) and ϕc(·), respectively, to embed pairs of spectro-
grams and descriptions {(ai, ci)}Ni=1 into a shared D-dimensional
space such that representations of matching audio-caption pairs are
close. This behavior is achieved by contrastive training, which
makes the embeddings of matching audio-caption pairs (ai, ci)
more similar while pushing the representations of mismatching
pairs (ai, cj;j ̸=i) apart. The agreement between audio ai and de-
scription cj is estimated via the normalized dot product in the shared
embedding space:

Cij =
ϕa(ai)

T · ϕc(cj)

∥ϕa(ai)∥2 ∥ϕt(cj)∥2

The similarity matrix C ∈ RN×N holds the agreement of matching
pairs on the diagonal and the agreement of mismatching pairs off-
diagonal. We train the system using the NT-Xent [14] loss, which is
defined as the Cross-Entropy (CE) between the ground truth and the
posterior over the text queries and the audio recordings; the ground
truth is given by the identity matrix I ∈ RN×N :

L =
1

2 ·N

N∑
i=1

CE(Ci∗, Ii∗) + CE(C∗i, I∗i)

1https://github.com/OptimusPrimus/dcase2023_
task6b
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Instruction GPT3.5-turbo’s Response

I will give a description of an audio recording and tags associated with the
audio recording. Generate 5 audio captions describing the sound event.
Each audio caption should be one sentence with less than 20 words. Use
grammatical subject-verb-object sentences. Do not include names of cities,
countries, and persons. Do not include the time. Do not include recording
device names. Do not write introductions or explanations. Do not use
“heard” or “recorded”. Start each output sentence with its index.
’A person is making noise by tapping their fingernails on a solid surface.’
[dull, metal]

1. The sound of nails tapping on a metal surface is heard.
2. Fingernails are producing a dull sound when tapped.
3. A person is tapping their nails on a solid, metal surface.
4. The noise of someone tapping their fingernails is audible.
5. Nails are rhythmically tapping on a hard metal object.

Table 1: Example query fed to GPT3.5-turbo to augment a ClothoV2 caption (in blue) with the available keywords (in orange; query inspired
by WavCaps [8]). The response is a list of rephrased captions, some of which take the keywords into account (highlighted in orange).

2.1. Audio Embedding Models

We choose the Patchout faSt Spectrogram Transformer (PaSST)
[10] to convert audio recordings into a compact, high-level vector
representation because it achieves state-of-the-art results on mul-
tiple audio classification benchmarks [15] while keeping memory
and computational complexity low compared to the vanilla audio
spectrogram transformers [16]. PaSST uses ImageNet [17] pre-
trained parameters from a vision transformer [18,19] and fine-tunes
them on AudioSet [11] for general-purpose audio tagging. The
relatively low computational and memory footprint is achieved by
dropping patches from the input sequence. This procedure, called
Patchout [10], additionally regularizes the model during training.
We conducted experiments with PaSST models that take audios
of up to ten seconds in length as input and extract overlapping or
non-overlapping patches of size 16 × 16 from the input spectro-
gram. Pre-trained PaSST models are available on GitHub2. We
additionally experimented with two convolutional neural networks
pre-trained on AudioSet, namely CNN10 and CNN14 [5]. These
models can handle inputs of arbitrary length, so we directly input
up to 30 seconds long audio instead of cutting them into shorter
segments. Table 2 gives an overview of all audio embedding mod-
els used in our experiments.

patch
stride

patch
out

input
length (s)

AS
mAP

number
params

CNN10 - - 30 38.0 6.3M
CNN14 - - 30 43.1 81.8M

PaSST-L 10× 10 4; 50 10 45.9 41.8M
PaSST-N 16× 16 2; 15 10 46.8 86.2M
PaSST-S 10× 10 4; 50 10 48.6 86.2M
PaSST-S20 10× 10 4; 80 20 47.4 86.2M

Table 2: Overview of the audio embedding models compared in our
experiments. The first section shows CNNs from [5]. The second
section summarizes PaSST variants [10].

2.2. Sentence Embedding Models

We compared five different sentence embedding models: bert-
small, bert-base, bert-large, roberta-base, and roberta-large. All

2https://github.com/kkoutini/passt_hear21

models are bi-directional self-attention-based sentence encoders
that underwent self-supervised pretraining on the BookCorpus [21]
and WikiText datasets [22]. BERT- and RoBERTa-based models
differ in the masking strategy used during training: the former was
trained using 10 fixed masks for each sentence, while the latter used
new, dynamically generated masks in each forward pass. For both
models, we selected the output vector that corresponds to the class
token as sentence embedding. The parameter counts for bert-small,
bert-base, bert-large, roberta-base, and roberta-large are around 29,
110, 345, 123, and 354 million, respectively.

2.3. Shared Audio-Caption Space

The audio and text embeddings generated by the encoders are in-
tegrated into a shared audio-caption space by using a simple lin-
ear projection that maps the embedding models’ output to a size of
1024. Initial experiments suggested that using a non-linear projec-
tion (e.g., a multilayer neural network) does not significantly im-
prove performance.

2.4. Datasets

Our final models were trained in two steps on multiple datasets.
First, we performed pretraining on ClothoV2, AudioCaps, and Wav-
Caps. The resulting models were then further finetuned on a cus-
tom, augmented version of ClothoV2 (called ClothoV2 GPT be-
low), which also takes into account the available meta-data associ-
ated with each audio file.

2.4.1. ClothoV2

ClothoV2 [9] contains 10-30 second-long audio recordings and cap-
tions that are between 8 and 20 words long. The development
set’s training, validation, and test split suggested by the organizers
contains 3840, 1045, and 1045 recordings, respectively, and each
recording is associated with five human-generated captions. The
leaderboard evaluation split used for the final system ranking con-
tains 1000 audio recordings and 1000 captions. We used the valida-
tion split to monitor the generalization performance and report the
performance on the test split in Section 3.

2.4.2. AudioCaps

AudioCaps [13] contains 51, 308 audio recordings taken from Au-
dioSet and one human-written caption for each of them. Each audio
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audio
embedding

segment
length (s) overlap text

embedding finetune GPT-
augment mAP@10 R@1 R@5 R@10

PaSST-N 10 ✗ bert-small ✗ ✗ 32.98 21.45 48.71 62.05
PaSST-N 10 ✗ bert-base ✗ ✗ 35.22 23.07 51.48 65.36
PaSST-N 10 ✗ bert-large ✗ ✗ 35.78 23.75 52.27 65.57
PaSST-N 10 ✗ roberta-base ✗ ✗ 35.12 23.02 51.89 65.26
PaSST-N 10 ✗ roberta-large ✗ ✗ 36.65 24.26 53.89 66.87

CNN10 30 ✗ bert-base ✗ ✗ 23.72 14.18 36.59 49.21
CNN14 30 ✗ bert-base ✗ ✗ 28.06 17.86 40.82 54.56
PaSST-L 10 ✓ bert-base ✗ ✗ 33.47 21.67 49.24 63.16
PaSST-N 10 ✗ bert-base ✗ ✗ 35.22 23.07 51.48 65.36
PaSST-S 10 ✓ bert-base ✗ ✗ 32.83 20.90 48.82 62.60

PaSST-N 10 ✗ roberta-large ✓ ✗ 38.00 25.51 55.06 68.56
PaSST-N 10 ✗ roberta-large ✓ ✓ 38.56 26.07 55.27 69.30

[20] CNN14 30 - all-mpnet-base-v2 ✗ ✗ 22.20 13.00 34.30 48.00
[8] CNN14 30 - bert-base ✓ ✗ 32.95 21.41 47.77 62.10

Table 3: Text-to-audio retrieval performance on the ClothoV2 test set for different combinations of language and audio embedding models
(sections one and two, respectively). The impact of additional fine-tuning on ClothoV2 and ClothoV2GPT is shown in section three. Section
four shows results from the DCASE baseline system [20] and the current state of the art [8] (values based on WavCaps’s GitHub repository).

recording has a duration of 10 seconds, and the captions are, on
average, 9.8 words long. We concatenated the training, validation,
and testing split of AudioCaps into one large dataset and used it for
pretraining.

2.4.3. WavCaps

WavCaps [8] is a weakly-labeled audio-caption dataset that con-
tains 403, 050 audio recordings of varying length collected from
FreeSound, BBC Sound Effects, SoundBible, and a strongly labeled
subset of AudioSet [23]. Each audio file is associated with a syn-
thetic audio caption that was created by instructing the GPT3.5-
turbo model to extract relevant sound events from metadata and
output a single-sentence description. The generated captions are,
on average, 7.8 words long. The authors demonstrated the useful-
ness of these synthetic captions by successfully using the dataset for
audio retrieval, audio captioning, and text-based sound generation.

2.4.4. ClothoV2 GPT

Each audio recording in the ClothoV2 dataset is associated with ad-
ditional metadata consisting of the file name, a list of keywords, a
username, and a web URL. We took advantage of the additional in-
formation and used GPT3.5-turbo to augment the human-generated
captions with the available keywords. To this end, we instructed the
model to take the keywords into account and rephrase the available
captions. We generated five new captions for each caption in the
training set, resulting in 96, 000 additional captions. Table 1 gives
an example query and the resulting augmented captions: GPT3.5-
turbo successfully combined the description and the keywords into
five varying descriptions with similar content; four of these contain
the provided keywords. We will refer to this augmented version of
ClothoV2 as ClothoV2 GPT. The generated captions are available
in our GitHub repository.

2.5. Preprocessing

To allow batched processing of recordings of varying lengths, we
extracted random 30-second snippets from those audio recordings

that are longer than 30 seconds and zero-padded shorter record-
ings to the maximum duration in the current batch. The resulting
waveforms were converted to 128-bin log-MEL spectrograms us-
ing a 1024-point FFT (32ms) and hop size of 320 (10ms). The
spectrograms were centered and whitened with the approximate
global mean and standard deviation before feeding them into the au-
dio embedding model. The input sentences were pre-processed by
transforming all characters to lowercase and removing punctuation.
The resulting strings were tokenized with the WordPiece tokenizer,
padded to the maximum sequence length in the current batch, and
truncated if they were longer than 32 tokens.

2.6. Training

We pre-trained the models on AudioCaps, WavCaps, and the train-
ing set of ClothoV2. Both embedding models were jointly opti-
mized using gradient descent with a batch size of 64. We used
the Adam update rule [24] for 16 epochs, with one warmup epoch.
Thereafter, the learning rate was reduced from 2 × 10−5 to 10−7

using a cosine schedule. The hyperparameters of the optimizer were
set to PyTorch’s [25] defaults. We further used structured patchout
as a regularizer during training with hyperparameters depending on
the audio length and patch extraction (see Table 2). Finetuning on
ClothoV2 GPT was done in a similar manner as pretraining but only
for five epochs with a maximum learning rate of 8× 10−6. During
the finetuning procedure, a caption was swapped with one of its five
GPT-augmented versions with a probability of 0.3.

3. RESULTS

The performance of different audio and sentence embedding mod-
els is summarized in Table 3. The combination of PaSST-N and
roberta-large, pre-training on all data sets, and fine-tuning with GPT
augmentation outperforms the current state of the art [8] based on
bert-base and CNN14 by 5.6 pp. mAP@10. In the following sec-
tions, we analyze our method in detail to identify each component’s
impact on the overall performance.
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3.1. Pre-training Data Sets

ClothoV2 is relatively small compared to captioning data sets in the
image domain; to further enhance the performance, we additionally
leveraged AudioCaps and WavCaps. In this section, we investigate
the impact of the additional pre-training data sets on the final per-
formance. To this end, we used PaSST-N and bert-base and trained
them on different combinations of the three sets. We report the
results in terms of mAP@10 on ClothoV2’s test set in Table 4. Pre-
training on WavCaps or ClothoV2 results in similar performance
of around 27 mAP@10; pretraining exclusively on AudioCaps is
roughly 6 pp. worse. Surprisingly, adding AudioCaps to WavCaps
did not further improve the result; however, adding ClothoV2 to
WavCaps or AudioCaps yielded improvements of 6.8 and 9.6 pp.,
respectively. The best result overall was achieved by combining all
three data sets.

AudioCaps WavCaps ClothoV2 mAP@10

✓ ✗ ✗ 21.01
✗ ✓ ✗ 27.62
✗ ✗ ✓ 27.28

✓ ✓ ✗ 27.13
✗ ✓ ✓ 34.42
✓ ✗ ✓ 30.64

✓ ✓ ✓ 35.22

Table 4: Ablation study on the effect of pre-training data sets.

3.2. Text Embedding Models

We assumed that larger sentence embedding models would lead to
better retrieval performance. To test this hypothesis, we experi-
ment with three variants of BERT and two variants of RoBERTa.
The results are summarized in the first section of Table 3. Larger
BERT sentence encoders indeed performed better (compare bert-
small, bert-base, and bert-large), and a similar trend can be observed
for RoBERTa (compare roberta-base and roberta-large). The best
overall results were achieved by utilizing roberta-large.

3.3. Audio Embedding Models

We likewise assumed that using a self-attention-based architecture
would lead to further improvements. To test this assumption, we
compared two convolutional architectures (CNN10 and CNN14)
to three recent spectrogram tansformers (PaSST-L, PaSST-N, and
PaSST-S); section two of Table 3 summarizes the results. Scaling
up the audio embedding model from CNN10 to CNN14 yielded
an improvement of 4.3 pp. mAP@10. Switching from CNN14
to PaSST-N further improved the mAP@10 by 7.1 pp. PaSST-S,
which extracts overlapping spectrogram patches and performs bet-
ter on AudioSet, surprisingly did not further improve the retrieval
performance over PaSST-N. This inconsistency could be due to a
suboptimal patchout configuration.

3.4. Audio Context Length

PaSST uses a learnable positional encoding with a fixed length of 10
seconds and consequently cannot handle longer audio segments. To
deal with the up to 30-second long audio recordings in ClothoV2,
we cut longer waveforms into shorter segments, embedded each
segment separately, and averaged the resulting embeddings over

time to obtain a single vector representation. To investigate the im-
pact of the segment length, we conducted experiments by splitting
the recordings into 2, 5, 10, and 15 seconds long snippets. We used
PaSST-S20 for those experiments, an architecture similar to PaSST-
S, but with a positional encoding for audios of up to 20 seconds in
length. The results are given in Figure 1. While a longer context is
advantageous performance-wise, it also comes at the price of higher
computational cost (which grows quadratically with the input size).
We find that PaSST’s default maximum input length of ten seconds
strikes a good balance.

Figure 1: Performance of PaSST-S20 for different audio lengths.

3.5. Fine-Tuning

We further investigated the impact of additional finetuning on the
target data sets. To this end, we continued training (as described in
Section 2.6) on the training split of ClothoV2 with and without GPT
augmentation. The results are given in the third section of Table
3. Finetuning on ClothoV2 without GPT augmentation further im-
proved the pre-trained model by 1.3 pp. mAP@10. When finetuned
with GPT-Augmentation, overfitting was slightly reduced, and the
model improved by 1.9 pp. mAP@10. A similar advantage for the
GPT-augmented data set can be observed for the hidden test set of
the 2023’s DCASE Challenge.

4. DISCUSSION & CONCLUSION

This work presented a dual-encoder system for automatic audio re-
trieval, achieving state-of-the-art results on the ColthoV2 bench-
mark. The results of our experiments attribute the considerable per-
formance gains to two factors: firstly, the additional data sets with
human-generated and synthetic captions, and secondly, the audio
spectrogram transformer, which scaled better with the additional
data compared to convolutional neural networks. Augmentation of
the captions with the additional keywords reduced overfitting dur-
ing finetuning; however, it did not significantly improve retrieval
performance. One possible explanation for this is that each record-
ing in the ClothoV2 training set is associated with five different
captions, which are likely to contain the most relevant keywords al-
ready; adding further captions increases the variety only marginally.
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