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ABSTRACT

We propose a competitive Foley sound synthesis system based

on available components and fine-tuned on a target dataset. We

reuse a text-to-audio pre-trained model composed of a latent dif-

fusion model (LDM), trained on AudioCaps, a variational auto-

encoder (VAE), and a vocoder. We fine-tune the LDM on the de-

velopment dataset of the DCASE 2023 Task 7 to output a latent rep-

resentation conditioned on the target class number. The VAE and

vocoder are then used to generate the waveform from the latent rep-

resentation. To improve the quality of the generated samples, we uti-

lize a post-processing filter that selects a subset of generated sounds

to match a distribution of target class sounds. In experiments, we

found that our system achieved an average Fréchet audio distance

(FAD) of 4.744, which is significantly better than 9.702 produced

by the baseline system of the DCASE 2023 Challenge Task 7. In

addition, we perform ablation studies to evaluate the performance

of the system before fine-tuning and the effect of sampling rate on

the FAD.

Index Terms— Foley sound synthesis, conditional sound gen-

eration, latent diffusion, Fréchet audio distance

1. INTRODUCTION

Foley sound synthesis is the task of generating sound effects added

to multimedia content to enhance the perceptual audio experience.

Originally developed for cinema and television, it was conducted

by skilled artisans using elaborate manual techniques and is named

after Jack Donovan Foley, one of their pioneers [1]. Interestingly,

Foley sound effects are perceived as more authentic than their real

counterparts captured in live recordings [2]. The potential of dig-

ital signal processing for sound synthesis was recognized early,

as exemplified by the famous Karplus-Strong algorithm [3]. The

recent deep learning revolution has brought the realism levels of

digital sound synthesis to new levels, in particular for speech [4]

and music [5, 6, 7]. A few works have focused specifically on

Foley sound synthesis either with video-guidance [8, 9], or with-

out [10, 11, 12, 13]. We can also mention some niche applications

like synthesizing cricket sounds as test signals for perceptual exper-

iments [14].

Recently, text-to-audio sound generation based on diffusion

models has gained traction. Following a methodology introduced

for images [15], AudioLDM [16] has demonstrated impressive con-

ditional sound generation quality. AudioLDM is composed of a la-

tent diffusionmodel (LDM), a variational autoencoder (VAE), and a

neural vocoder. The LDM is conditioned on a text prompt through a

Contrastive Language-Audio Pretraining (CLAP) embedding. The

latent representation is provided by the VAE which has learned to

encode a mel-spectrogram into a compressed latent space. The neu-

ral vocoder is based on HiFi-GAN [17], and decodes a waveform

from the mel-spectrogram into an uncompressed waveform. Tango

[18] has been proposed to enhance the text prompting functional-

ity of AudioLDM using an instruction-tuned large language model

(LLM) instead of the CLAP embedding.

Due to this rising interest in general sound generation, a new

related task was added to the DCASE 2023 Challenge to stimulate

research about this challenging problem. Task 7 [19], aptly called

Foley sound synthesis, requires participants to build a Foley sound

generation model for seven sound classes: dog bark (🐕), footstep

(👣), gunshot (🔫), keyboard (💻), moving motor vehicle (🚗), rain

(🌧), and sneeze/cough (🤧). The system is then used to produce 100

samples that are first evaluated in terms Fréchet audio distance. In

a second stage, a subjective evaluation based on quality, accuracy,

and diversity of the samples is conducted. Although text prompt-

ing models such AudioLDM or Tango have shown to be effective

in fine-grained guidance for audio generation, using them for class

conditional generation requires prompt engineering and trial and er-

ror. In addition, existing public models have been trained for the

generation of 10 s long samples at 16 kHz, while the challenge calls
for 4 s samples at 22.05 kHz.

We propose a pragmatic solution to this problem by combining

available components to obtain a high quality Foley sound synthe-

sis system. We modify an existing implementation of Tango1 to

enable sound-class-based guidance instead of text prompting. The

class-conditioned LDM is trained using the development set of the

DCASE 2023 Challenge Task that contains between 600 and 800

sounds of each of the classes. We initialize the model with a pre-

trained model of Tango, which was trained with AudioCaps [20]

dataset and Flan-T5 [21] LLM. The conditioning part based on Flan-

T5 is replacedwith a simple linear embedding layer to realize sound-

class-based conditioning. Moreover, we propose a post-processing

filter that selects a subset of generated samples to match a distribu-

tion of the target sound class. The post-processing filter adopts a

greedy backward selection strategy that iteratively drops a sample

to achieve the minimum Fréchet audio distance (FAD). Our exper-

iments show that our system significantly outperforms the baseline

system provided by the task organizers in terms of FAD. Audio sam-

ples produced by the system are available online2.

2. BACKGROUND

Our system, like AudioLDM [16] and Tango [18], is based on the

LDM originally proposed for image generation [15]. The LDM op-

erates in the latent-space generated by a VAE pre-trained on mel-

spectrograms. The generated mel-spectrograms are inverted into

waveforms using the neural vocoder HiFi-GAN [17].

1https://github.com/declare-lab/tango
2http://www.robinscheibler.org/dcase23t7-samples/
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Figure 1: System overview. The audio generation pipeline (left) has three elements. The core is a latent diffusion model (LDM) with class-

conditional embeddings (Emb.). We use pre-trained variational-autoencoder and HiFi-GAN vocoder for the reconstruction. The samples

produced are then filtered during post-processing (right) by greedy and Metropolis-Hastings optimization.

2.1. Latent Diffusion Models

The LDM transforms a sampled Gaussian noise ZN ∈ RC×T
r
×F

r

into a latent representation Z0 through N reverse diffusion steps

with a UNet-based neural network. T is the number of mel-

spectrogram frames, F is the number of mel-filter bins, C is the

number of channels in latent space, and r is the compression level
of VAE. The neural network receives a L-length sequence of d-
dimensional embedding vectors E ∈ RL×d transformed from the

sound class indices through a linear embedding layer. The condi-

tioner E is fed into the network through the cross-attention mecha-

nism.

Given the latent featureZ0, the corresponding class embedding

vectorE, and random isotropic Gaussian noise ε̄ ∈ RC×T
r
×F

r , the

neural network is trained to minimize the following loss function L
on the basis of the theory of denoising diffusion probabilistic mod-

els [22]:

L = Eε̄,Z0,n

[
‖ε̄− ε(

√
ᾱnZ0 +

√
1− ᾱnε̄,E, n; θ)‖22

]
, (1)

ᾱn =

n∏
n′=1

αn′ , (2)

αn = 1− βn, (3)

where ε(·, ·, ·; θ) is the neural network that outputs the estimated

noise of the same shape as Z0. The variable βn is the variance of

the Gaussian distribution in the forward process.

Classifier-free guidance [23] can be used to boost the fidelity

of the sound class. Using this technique, the backward process to

obtain Zn−1 from Zn can be written

Zn−1 =
1√
αn

(
Zn −

βn√
1− ᾱn

ε̃n

)
+ σnε̃n (4)

ε̃n = wε(Zn,E, n; θ) + (1− w)ε(Zn,O, n; θ), (5)

where σ2
n is the variance of the Gaussian distribution in the reverse

process, respectively. The symbolO represents the all zero embed-

ding vector used for unconditional inference, and w is a parameter

of the guidance scale. Note that, to accelerate the sampling speed

at inference time, denoising diffusion implicit models (DDIM) [24]

sampling is used.

2.2. Variational autoencoder and neural vocoder

AVAE is used to compress a mel-spectrogramM ∈ RT×F into the

latent space parametrized by mean and variance µ, σ ∈ RC×T
r
×F

r .

The VAE is composed of a stack of CNN-based encoders. In the

submitted system pipeline, the latent Z0 produced by the LDM is

fed into the decoder of VAE to reconstruct a mel-spectrogramM .

To reconstruct a waveform x ∈ RT ′
from a mel-spectrogram

M given by the VAE, the generator of HiFi-GAN [17] can be used,

where T ′ is a length of the waveform. The module repeatedly up-

samples themel-spectrograms by a transposed convolution followed

by multi-receptive field fusion (MRF). The MRF is composed of

residual blocks, where each block processes the inputs by convolu-

tions of multiple kernel sizes and dilations to capture the temporal

feature by various receptive fields.

3. PROPOSED SYSTEM OVERVIEW

An overview of our submitted system is depicted in Fig. 1. Our

system adopts a similar pipeline with Tango [18], where a latent

generator based on LDM, a latent-to-mel decoder using VAE, and a

mel-to-wav vocoder are cascaded. Our LDM accepts a sound class

index c as a conditioner instead of a text prompt. We use pre-trained

VAE and HiFi-GANmodels used in AudioLDM [16] to reconstruct

a waveform from the latent representation. After the audio genera-

tion pipeline, a post-processing filter is employed to drop irrelevant

samples to match the distribution of a target sound class. In the fol-

lowing subsections, we describe our implementation of themodules.

3.1. Sound-class-based Conditioning

When training, we initialize our model with a pre-trained check-

point of Tango. The checkpoint is designed to receive a sequence

of embedding vectorsE from the Flan-T5 text encoder. We replace

the text encoder with a linear embedding layer that projects a sound

class index c into a d-dimentional vector. Unlike Tango, we jointly
train the conditioner with the main network of LDM. Although the

cross-attention mechanism for conditioning accepts a sequence of

embedding vectors, which is designed to accept a text sequence, we

use a single target class embedding vector as E ∈ R1×d in this

work.

3.2. FAD-oriented Post-processing Filter

The quality of the samples produced by the system, while accept-

able, can be improved by over-generating and filtering. For this

task, a target sample quality metric is necessary. The FAD metric

used in the challenge is an obvious choice. The FAD is computed as

follows. First, VGGish [25] embeddings of both the reference and

generated samples are computed. The embeddings are computed

for segments of 16,000 samples with half-overlap. This produces

10 embedding vectors per 4 s of generated audio. We note that the
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challenge abuses the metric a little bit since the VGGish model was

trained on 16 kHz data, while the challenge uses 22.05 kHz. The

mean µ and covariance matrixΣ of the embedding vectors of both

reference and generated audio are computed and their Fréchet dis-

tance [26] is

FAD(µr,Σr,µg,Σg) =

‖µr − µg‖2 + tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
. (6)

To obtain P samples, we first generate Q samples, with Q > P .
Then, we first reduce the number of samples by greedy selection.

We start with the set of all Q samples, denoted S = {1, . . . , Q}.
At each iteration, we remove sample k whose absence decreases the
FAD most, i.e.,

k = argmin
`∈S

FAD(µr,Σr, µ̄
(S−`)
g , Σ̄

(S−`)
g ), (7)

where µ̄
(S−`)
g and Σ̄

(S−`)
g are the mean and covariance matrix, re-

spectively, after removing the `th sample. Then, we update S ←
S − {k}, where ”−” here is the set difference operator. We repeat

until the size of S is P , or no sample can be removed without the
FAD increasing.

If we still have more than P samples, we apply the Metropolis-

Hastings (MH) algorithm [27] to find a good sub-set of P elements.

We initialize the algorithm by uniformly sampling at random 100

subsets of P samples and picking the one with lowest FAD. At each

iteration of the algorithm, we randomly swap two samples. We first

pick at random one of the current P samples. Then, we pick one of

the discarded samples with probability inversely proportional to the

embedding distance to the first sample. We swap the two samples

and evaluate the FAD. If it decreases, we accept the change. If it

increases, we only accept the change with a small probability that

decreases over time with a linear schedule. Otherwise, we reject

the change. The subset with the lowest FAD over all iterations is

returned by the algorithm.

We note that such a filtering system allows to achieve an ar-

bitrarily small FAD, at the cost of generating an increasingly large

number of samples. In our final system where P = 100, we set
Q = 200 to strike a balance between FAD performance and gener-

ation time.

4. EXPERIMENTS

4.1. Effect of Sampling Rate on FAD

Our generative model operates at 16 kHz and thus requires upsam-
pling to 22.05 kHz to match the dataset. This means that the fre-
quency band from 8 kHz to 11.025 kHz will be empty. We test the

effect of this by downsampling the development dataset to 16 kHz
and then back up to 22.05 kHz. Table 1 shows the FAD of the de-

velopment dataset, i.e., computed with test set as reference3, before

and after this operation. The FAD increases by less than 1, which

seems acceptable for our purpose. The effect varies by class, and

surprisingly the FAD decreases for the rain class.

3The mean vector and covariance matrix of the VGGish embeddings of
the test set were provided by the task organizers for the purpose of computing
the FAD with respect to the hidden test set.

Table 1: Fréchet audio distance (FAD) of the development dataset

under several selection procedure and sampling frequencies. The

column full is the full development set. 100 random indicates that

we chose at random a 100 samples from each class. The result at

different stages of the post-filtering a under optimization. The latter

is further divided into the result of the greedy optimization, which

may have more than 100 sample, the random initialization of MH

(+rand.), and the final MH stage.

class full 100 random optimized (22 kHz)
22 kHz 22 kHz 16 kHz greedy† +rand. +MH

🐕 1.144 1.883 2.954 0.609 0.802 0.793

👣 2.072 2.388 3.846 0.715 0.862 0.837

🔫 2.606 3.036 4.368 0.667 0.899 0.887

💻 2.772 3.210 3.067 0.441 0.460 0.460

🚗 4.324 5.426 7.950 1.210 1.281 1.281

🌧 3.007 3.624 3.423 0.783 0.902 0.902

🤧 0.400 0.768 1.367 0.188 0.268 0.265

avg. 2.332 2.904 3.854 0.660 0.782 0.775
† More than 100 samples

4.2. FAD-based Post-filtering

We evaluate the post-filtering described in Section 3.2 on the devel-

opment dataset of the DCASE 2023 Task 7. We evaluate the FAD

at different stages of the post-filtering pipeline and show the results

in Table 1, under the optmized column. We see that the greedy stage

is very effective and reduces the FAD to 23.5% of the random se-

lection. However, there may still be more than 100 samples at this

stage. Selecting 100 samples out the ones selected by the greedy ap-

proach increases slightly the FAD by about 0.22 points. The effect

of the MH algorithm is not always effective, but can further reduce

the FAD by up to 0.03 points in the best case.

4.3. Foley Sound Synthesis

4.3.1. Models and Hyperparameters

HiFi-GAN and VAE: We used pre-trained checkpoints of HiFi-

GAN and VAE used in [16]. The HiFi-GAN model was trained

with AudioSet [28]. All the training data were segmented or padded

into 10 seconds and resampled to 16 kHz, i.e., T ′ = 160, 000.
Each audio sample was transformed into a 64-dimMel-spectrogram

(F = 64) with a window length of 1024, and a hop length of 160.

The number of frames T was 1024 by padding 24 frames to avoid

further padding with downsampling operations in VAE and LDM.

The VAE model was trained with AudioSet [28], AudioCaps [20],

Freesound 4, and BBCSFX 5. The compression level r was 4, and
the number of channels C was 8.

Baselines: We use two baselines. 1) The challenge baseline sys-

tems [19], itself based on [12]. It uses a VQ-VAE for compres-

sion to latent space and HiFi-GAN for signal reconstruction. For

latent generation, it uses an auto-regressive model based on Pixel-

SNAIL [29]. This model operates at 22.05 kHz. 2)We also evaluate

the direct use of Tango [18] for the task. We condition the genera-

tion on text prompts designed for each of the target classes — 🐕:

“A dog barking”, 👣: “Footsteps”, 🔫: “Gun shot”, 💻: “Typing

4https://freesound.org/
5https://sound-effects.bbcrewind.co.uk
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Table 2: Fréchet audio distance (FAD) with baseline and our sys-

tems. ’raw’ indicates the systemwithout the FAD filter, i.e., the first

100 samples from the audio generation pipeline were used. ’filtered’

indicates our submitted system with the FAD filter.

class baseline Tango ours

[19] [18] raw filtered

🐕 13.411 6.031 5.835 3.816

👣 8.109 11.889 11.209 8.227

🔫 7.951 8.082 5.790 3.427

💻 5.230 11.014 3.698 2.758

🚗 16.108 14.636 11.440 6.837

🌧 13.337 8.550 7.031 5.399

🤧 3.770 9.450 3.658 2.741

avg. 9.702 9.450 6.952 4.744

a keyboard”, 🚗: “motor vehicle moving”, 🌧: “Heavy rain”, and

🤧: “woman sneezing.” Since Tango produces 10 s long samples at
16 kHz, we truncate them to 4 s and upsample to 22.05 kHz.
Proposed System: We initialized our LDM using a checkpoint

of Tango 6. The model used the conditioning vector dimension

d = 1024. The initial checkpoint was trained with AudioCaps [20].
For fine-tuning, we used the DCASE2023 Task7 development set.

Since the audio data were sampled at 22.05 kHz and segmented in

four seconds, we resampled them to 16 kHz and padded them into

10 seconds. We set N = 1000 forward diffusion steps for fine-

tuning. Our LDM was fine-tuned with the AdamW optimizer with

an initial learning rate of 3e-5 and a linear decay learning rate sched-

uler. We fine-tuned the model for 100k training iterations, with an

effective batch size of 42 using seven A100 GPUs. In the inference

phase, we used DDIM [24] for 100 sampling steps and a classifier-

free guidance scale of w = 3. As our model produces a 10-second
audio segment at a 16 kHz sampling rate, we extracted the first four-

second segment and resampled it to 22.05 kHz to fit the challenge

rule.

Post-processing: For each sound class, we generated Q = 200
samples with the aforementioned audio generation pipeline. Then

the FAD filter is applied to reduce the number of samples to P =
100.

4.3.2. Results

Table 2 shows FAD of the baselines and our system with respect to

the evaluation set. First, we observe that the Tango model, which

was trained on a much larger dataset, but did not include the Task

7 development set, performs slightly better than the baseline. This

shows the effectiveness of a large, diverse dataset. It is likely that

further prompt engineering would improve the result. The improve-

ment seems to come from large reductions of FAD on the dog bark

and rain classes. We note that both the baseline and Tango could be

improved by the post-filtering, which we did not try.

Our fine-tuned model conditioned on class embeddings per-

forms better accross the board, with the exception of footstep, where

the baseline is better. However, informal listening tests revealed the

samples to be of good quality regardless. We also point out that the

keyboard class nearly saturates the lower bound FAD of 100 random

6https://huggingface.co/declare-lab/tango

samples of the development set at 16 kHz (see Table 1). We also see

that the moving motor vehicle class is fairly difficult, as suggested

by the FAD of this class in the development set.

With the FAD filter, the FADs were significantly reduced re-

gardless of the sound classes. Specifically, we achieve a reduction

of 32% of the average FAD compared to the raw outputs. The re-

sults demonstrate that the proposed audio generation pipeline can

generate class-specific audio samples with sufficient diversity, and

that the proposed FAD filter can select a subset of them with the

statistics of the target sound class.

5. CONCLUSION

We proposed a system based on class-conditioned latent diffusion

model for the DCASE2023 Task7: Foley sound synthesis. We ef-

ficiently make use of existing models that we adapt to the task and

pair with some signal processing for adaptation and output filtering.

We fine-tune pre-trained model for text-to-audio generation on the

development set of Task 7, and modifies its conditioning mecha-

nism to use class embedding vectors. Our post-filtering system uses

greedy and global optimization to select a set of samples match-

ing the statistics of the target evaluation set and decrease the FAD.

We found this technique very successful. However, we also noticed

during preliminary experiments that the audio quality of samples se-

lected this way did not always match the FAD score obtained. This

highlights the importance of generating good samples in the first

stage of the system. Overall, our submission system achieved sig-

nificantly better FAD scores than both the challenge baseline and an

out-of-the-box text-to-audio model.

An important aspect that is yet to be understood is how to lever-

age unlabelled data for pre-training, since training sets for sound

effects may be small depending on the target class.
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