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ABSTRACT

Designing lightweight models that require limited computational
resources and can operate on edge devices is a major trajectory in
deep learning research. In the context of Acoustic Scene Classifica-
tion (ASC), the DCASE community hosts an annual challenge on
low-complexity ASC, contributing to the research on Knowledge
Distillation (KD), Model Pruning, Quantization and efficient neural
network design. In this work, we propose a system that contributes
to the latter by introducing CP-Mobile, a lightweight CNN architec-
ture constructed of residual inverted bottleneck blocks and Global
Response Normalization. Furthermore, we improve Knowledge
Distillation by showing that ensembling CNNs and Audio Spectro-
gram Transformers form strong teacher ensembles. Our proposed
system improves the results on the TAU Urban Acoustic Scenes
2022 Mobile development dataset by around 5 percentage points in
accuracy compared to the top-ranked submission for Task 1 of the
DCASE 22 challenge and achieves the top rank in the DCASE 23
challenge1.

Index Terms— CP-Mobile, Receptive Field Regularization,
Patchout FaSt Spectrogram Transformer (PaSST), CP-ResNet,
Knowledge Distillation, Device Impulse Response augmentation,
Freq-MixStyle

1. INTRODUCTION

The task of Acoustic Scene Classification (ASC) is to assign a scene
label to an audio clip. The Low-Complexity Acoustic Scene Classifi-
cation task of the DCASE 23 challenge [1] is based on the TAU Ur-
ban Acoustic Scenes 2022 Mobile development dataset (TAU22) [2],
consisting of 1-second audio clips, each belonging to one of 10 dif-
ferent acoustic scenes. Audio clips are recorded by three real de-
vices and six simulated devices, including three simulated devices
that are not included in the train split, making device generalization
an important and challenging task. The challenge further introduces
limits on the model size (128 kB) and the computational complex-
ity in terms of multiply-accumulate operations (30 million MACs).
Systems are ranked according to class-wise averaged accuracy, con-
sumed MACs for the inference of a 1-second audio clip, and the
model size, encouraging participants to design models with a good
performance-complexity trade-off.

ASC Architectures: Convolutional Neural Networks (CNNs)
are well-established models to tackle low-complexity ASC and
dominated the leaderboard in previous editions of the challenge [1–
3]. Common practice is to regularize the receptive field of
CNNs [4, 5], which has been shown to improve the generalization

1Source Code: https://github.com/fschmid56/cpjku_
dcase23

performance. Particularly successful implementations of receptive-
field regularized CNNs (RFR-CNNs) include BC-ResNet [6, 7]
and CP-ResNet [8–10]. Recently, Audio Spectrogram Transform-
ers achieved competitive results on multiple downstream tasks
in the audio domain, including the Patchout FaSt Spectrogram
Transformer (PaSST) [11] achieving state-of-the-art results on the
TAU Urban Acoustic Scenes 2020 Mobile development dataset
(TAU20) [2].

Efficient Model Design: A substantial amount of prior work
exists on making conventional CNNs more efficient by factorizing
convolution operations. In this regard, MobileNets [12, 13] and Ef-
ficientNets [14], introduced in the vision domain, have been suc-
cessfully adapted to the audio domain [15, 16]. MobileNets and
EfficientNets are based on inverted bottleneck blocks and inspire
CP-Mobile, introduced in Section 3.

Model Compression Techniques: Besides designing efficient
architectures, model compression techniques such as Parameter
Pruning [17, 18], Quantization [19, 20] and Knowledge Distillation
(KD) [21, 22] are popular to reduce a system’s complexity further.
Quantization to 8-bit precision was forced by the DCASE 22 chal-
lenge [1] rules, Parameter Pruning has been successfully applied
to ASC systems [6, 9, 23], and KD has been the most successful
technique in previous editions of the challenge with the top 3 teams
using KD in the DCASE 22 and 23 challenges [1].

Device Generalization Methods: Many different approaches
have been applied to counter the distribution shift caused by the
unseen devices at test time. In this regard, Domain Adaptation
has been used to force device-invariant representations extracted by
the model [8, 24]. Other approaches tried to train device transla-
tors [6], change the sampling frequency of devices [7], or remove
device-specific information by normalization [25]. An augmenta-
tion technique called Freq-MixStyle (FMS) [25,26] lead to the best
performance on unseen devices in the DCASE 22 challenge, which
recently has been paired with device impulse response (DIR) aug-
mentation to boost the performance further [27].

In this work, we propose a new ASC system, outperforming
the top-ranked system in the DCASE 22 challenge by 5% accuracy
on the TAU22 development dataset and achieving the top rank in
the DCASE 23 challenge. The main contribution of our ASC sys-
tem is twofold: 1) we achieve a new state-of-the-art teacher model
performance by ensembling Audio Spectrogram Transformers and
CNNs trained with different FMS and DIR settings, and 2) we in-
troduce CP-Mobile, an efficient, factorized CNN that can distill the
knowledge of the large teacher ensemble under low-complexity lim-
its. We introduce the teacher ensemble in Section 2, CP-Mobile in
Section 3 and connect them in the KD setup described in Section 4.
The results are presented in Section 5, including a detailed ablation
study assessing the components of our system.

https://github.com/fschmid56/cpjku_dcase23
https://github.com/fschmid56/cpjku_dcase23
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2. TEACHER ENSEMBLE: PASST AND CP-RESNET

Audio spectrogram transformer models such as PaSST [11] are
purely self-attention-based models, making them excellent at cap-
turing the global context of an audio clip. PaSST has been shown to
be a good teacher model for low-complexity CNNs [10,16,26]. CP-
ResNet (CPR) [4], however, is a RFR-CNN that gradually builds
local features covering a spatially restricted size before applying a
global pooling operation.

Experiments in [26] and [16] show that high-performing en-
sembles can be achieved by ensembling PaSST models trained with
varying FMS [25,26] and model configurations. To further increase
the diversity of predictions in the ensemble, we experiment with
including models trained with DIR augmentation [27] and CPR
models. We follow the model configurations and training proto-
cols used in [27] and use a CPR with 128 base channels, resulting
in a model with approximately 4M parameters. We finetune the Au-
dioSet [28] pre-trained PaSST, consisting of 85M parameters, on the
TAU22 dataset, using a structured patchout of 6 on the frequency di-
mension. In addition to the training protocol of [27], we augment
TAU22 by adding shifted crops of the reassembled 10-second audio
clips, as proposed in [29]. PaSST and CPR models are trained in 4
different configurations: 1) using no device generalization method,
2) using DIR, 3) using FMS and 4) using the combination of DIR
and FMS. Hyperparameters for DIR and FMS are chosen according
to [27] and set to α = 0.4, pFMS = 0.4 and pDIR = 0.6 for PaSST
and to α = 0.4, pFMS = 0.8 and pDIR = 0.4 for CPR. The results
for the teacher ensembles are presented in Section 5.1.

3. STUDENT MODEL: CP-MOBILE

In this section, we introduce CP-Mobile (CPM), a novel efficient
architecture for ASC. The goal is to maintain beneficial properties
from CPR [4,5], such as the regularized receptive field, while reduc-
ing the complexity and factorizing convolution operations, such as
in MobileNets [12, 13] or EfficientNets [14]. Given that the teacher
ensemble consists of multiple millions of parameters, an important
point is to increase the student model’s capacity to be able to distill
as much knowledge as possible from the teacher ensemble to the
student, even in a low-complexity setting.

Input Operator Stride

256 x 64 x 1 Conv2D@3x3, BN, ReLU 2 x 2
128 x 32 x BC/4 Conv2D@3x3, BN, ReLU 2 x 2

64 x 16 x BC CPM Block S 1 x 1
64 x 16 x BC CPM Block D 2 x 2
32 x 8 x BC CPM Block S 1 x 1

32 x 8 x BC CPM Block T 2 x 1
16 x 8 x BC*CM CPM Block S 1 x 1

16 x 8 x BC*CM CPM Block T 1 x 1

16 x 8 x BC*CM² Conv2D@1x1, BN
16 x 8 x CLS Avg. Pool

Table 1: CP-Mobile Architecture: Input: frequency bands x time
frames x channels; Conv2D@KxK: Conv2D with kernel size KxK;
BC: Base Channels; CM: Channels Multiplier; CPM Block S/D/T:
Standard/Downsampling/Transition; CLS: Number of Classes

First, we factorize all 3x3 convolution operations in CPR into
a pointwise expansion convolution, a depthwise convolution and a
pointwise projection convolution and obtain residual inverted bot-
tleneck blocks (referred to as CPM blocks in the following). We
replace the max pool operations with strided convolutions to down-
sample the spatial dimensions. All shortcut paths that require
an additional pointwise convolution are removed and the strided
input convolution is split into two separate strided convolutions
to reduce the computational burden when operating on the high-
dimensional input spectrograms. We experiment with Relaxed In-
stance Frequency-wise Normalization [25], SubSpectral Normal-
ization [30] and Global Response Normalization (GRN) [31] in-
tegrated into different positions in the CPM blocks. While substan-
tial improvements for multiple normalization and position combi-
nations can be achieved, using GRN after adding the shortcut and
before the final ReLU activation leads to the highest performance
gain.

Table 3 shows the architecture of CPM. CPM’s complexity
scales in four dimensions: number of blocks (depth), number of
base channels (BC), network width modified using the channels
multiplier (CM) and expansion rate of inverted bottlenecks (EXP).
The depth of the network and the strides determine the receptive
field of the model. The overall spatial downsampling factor and the
position of the strided convolutions are inspired by the max pooling
layer positions in the low-complexity CP-ResNet in [10]. Experi-
menting with CPM models of varying depths, we find that using 6
CPM blocks creates a suitable receptive field size.

Figure 1: CPM blocks: (1) Transition Block (input channels ̸= out-
put channels), (2) Standard Block, (3) Spatial Downsampling Block
(S denotes stride)

Figure 1 depicts the structure of a CPM block consisting of two
pointwise and a depthwise convolution. The depthwise convolution
operates on the expanded channel representation, which has the size
of the number of block input channels times the scaling factor EXP.
We differentiate between Transition, Standard and Spatial Down-
sampling blocks (CPM blocks T, S, D). CPM block T increases the
channel dimension, uses no residual connection and can be used
with a strided depthwise convolution. CPM blocks S and D have
matching input and output channel dimensions and use a residual
connection. CPM block D uses average pooling with a kernel size
of 3 and a stride of 2 on the shortcut path to match the spatial di-
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mensions of the block output. GRN [31] is applied before the final
ReLU activation. GRN calculates a normalization value Ni for each
channel, where ||Xi|| is the L2-norm of channel i:

Ni =
||Xi||∑C

c ||Xc||/C
(1)

The normalization values Ni are used to calibrate the channel
responses, including two trainable parameters γ and β and a resid-
ual connection: X̂i = γ ∗Ni ∗Xi + β+Xi. GRN was introduced
in [31] to increase the feature diversity across channels. The main
consideration for using GRN in CPM is to avoid feature redundan-
cies in models with restricted capacity.

4. KNOWLEDGE DISTILLATION SETUP

Similar to [16], CPM is trained on the one-hot encoded labels and
the pre-computed predictions of the teacher ensemble described in
Section 5.1. Compared to the hard labels, the teacher soft labels de-
scribe blurred decision boundaries and establish important similar-
ity structures between classes. The loss, consisting of a combination
of hard label loss Ll and distillation loss Lkd, is given in Equation
2. λ is a weight that trades off label and distillation loss, zS and zT
are student and teacher logits, y denotes the hard labels and τ is a
temperature to control the sharpness of the probability distributions
created by the softmax activation δ. Ll is the Cross-Entropy loss
and Kullback-Leibler divergence is used as distillation loss Lkd.

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)) (2)

4.1. Experimental Setup

Preprocessing: For training the student models, the raw audio is
downsampled to 32 kHz and Mel spectrograms with 256 frequency
bins are computed. Short-Time Fourier Transformation is applied
with a window size of 96 ms and a hop size of 16 ms. Increasing
the window size from 64 to 96 ms and applying a 4096-point FFT
leads to a slight improvement compared to [10], as shown in Table 4
(large FFT window).
Training: CPM student models are trained for 75 epochs on the
TAU22 dataset with the shifted crops dataset augmentation de-
scribed in [29]. We use a batch size of 256, Adam optimizer [32]
and a learning rate scheduler that increases the learning rate to its
peak value until epoch 7 and linearly decreases it from epoch 25
to 67 to 0.5% of the peak value. The peak learning rate varies for
models of different sizes and is listed in Table 3. For device gener-
alization, we use FMS [25, 26] and DIR augmentation [27] and set
the hyperparameters α = 0.4, pFMS = 0.4 and pDIR = 0.6. For
KD [21], setting τ = 2 and using a high weight on the distillation
loss with λ = 0.02 turned out beneficial.

5. RESULTS

Below, we give the results of the teacher ensembles, analyze the per-
formance of CPM models scaled to different complexity levels and
offer a detailed ablation study of our system’s main components.

5.1. Teacher Ensemble Results

Table 2 lists CPR and PaSST models trained with different DIR and
FMS configurations and the accuracies achieved by individual mod-
els and the respective ensembles. Rows starting with Configs spec-
ify the combination of PaSST and CPR models or models trained

with different FMS and DIR settings. The models in the Configs
ensembles are chosen randomly from the pool of available mod-
els, such that each config, indicated by the superscript, is equally
represented. All ensembles are created by averaging the logits of
the individual models and # specifies the number of models in the
ensemble.

Besides the known fact [27] that device generalization via FMS
and DIR improves the accuracy substantially compared to the base-
lines (1 and 5), two important observations can be made:

1) Training with different device generalization methods leads
to models with varying device expertise, increasing the ensemble’s
diversity. Therefore, ensembles consisting of models trained with
different settings for FMS and DIR outperform ensembles consist-
ing of models trained with the same configuration. This effect is
more dominant for CPR, where the setting Configs: 2,3,4 improves
by 0.74% accuracy over the CPR4 configuration, even though the
individual models that make up the ensemble score on average
1.24% lower in accuracy compared to the CPR4 setting.

2) The ensemble’s diversity is further extended to different
views on the data. CPR focuses on building local features while
PaSST models the global context. Independent of the device gen-
eralization method, ensembling PaSST and CPR leads to a substan-
tial performance improvement with the ensembles Configs: 1,5 and
Configs: 4,8 outperforming the individual models that make up the
ensemble by around 5% accuracy.

Model Config Ensemble
Model FMS DIR Acc. # Acc.

CPR1 ✗ ✗ 56.40±0.18 3 57.47
CPR2 ✗ ✓ 58.96±0.21 3 60.06
CPR3 ✓ ✗ 62.27±0.22 3 63.22
CPR4 ✓ ✓ 62.56±0.33 3 63.74
Configs: 2,3,4 61.32±1.67 3 64.48

PaSST5 ✗ ✗ 59.48±0.64 3 60.99
PaSST6 ✗ ✓ 61.55±0.05 3 62.51
PaSST7 ✓ ✗ 61.08±0.38 3 62.06
PaSST8 ✓ ✓ 62.19±0.15 3 63.28
Configs: 6,7,8 61.82±0.40 3 63.37

Configs: 1,5 57.48 2 62.52
Configs: 4,8 62.40 2 67.30
Configs: 2,3,4,6,7,8 61.49±1.30 12 68.16

Table 2: Results of the teacher models CPR and PaSST and the re-
spective ensembles on TAU22 [2]. The Model Config section indi-
cates the configuration and the average accuracy and standard devi-
ation of individual models. The Ensemble section lists the ensemble
size (#) and the accuracy achieved by the ensemble.

For building the final teacher ensemble, we exploit both obser-
vations. Configs: 2,3,4,6,7,8 is constructed of 6 CPR and 6 PaSST
models, each including 2 models using DIR, 2 using FMS and 2
using DIR and FMS. Constructing even larger ensembles does not
improve the accuracy considerably. This final ensemble achieves
an accuracy of 68.16%, leading to an improvement of approxi-
mately 5.3% accuracy compared to the PaSST-only teacher ensem-
ble used in the top-ranked submission for the DCASE 22 challenge
(62.82%) [10]. We generate the predictions for the TAU22 develop-
ment set and the added shifted crops [29], average the logits of the
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12 models and reuse them to train our CPM students.

5.2. Student Models at Different Scales

Table 3 shows CPM models with different model scaling hyperpa-
rameters BC, CM and EXP, as introduced in Section 3. We find
that the number of base channels BC should be adapted to the re-
quired complexity level, e.g., models below 10k parameters achieve
the best performance with BC=8, while models with BC=32 work
best for models above 50k parameters. While small accuracy im-
provements can be achieved when scaling up CM and EXP, the
performance quickly saturates for values larger than 2. To achieve
the best performance, the learning rate needs to be increased for
smaller models.

All accuracies presented in Table 3 are based on models quan-
tized to 8-bit precision. The Quantization Aware Training [20]
applied to CPM models is detailed in [29]. Our smallest model
outperforms the DCASE baseline system [1] by almost 10% accu-
racy while requiring only around 12% of the model size and 5%
of MACs. The largest CPM model presented achieves an accuracy
of 63.21%, improving the accuracy by around 4% compared to the
top-ranked system [10] of the DCASE 22 challenge [1] while being
more than two times smaller in terms of model size and requiring
around 50% of the number of MACs.

Model BC,CM,EXP,LR Size (B) MMACs Acc.

CPM 8,2.1,1.7,0.003 5,722 1.58 52.61±1.25

CPM 16,1.5,1.75,0.003 12,310 4.35 58.42±0.51

CPM 24,1.5,1.9,0.002 30,106 9.64 61.77±0.54

CPM 32,1.7,1.9,0.001 54,182 16.80 63.21±0.44

DCASE BL. [1] 46,512 29.23 42.9±0.77

Table 3: BC, CM and EXP are model scaling hyperparameters
introduced in Section 3 and LR denotes the learning rate. Model
Size is given in Bytes after quantization and MMACs specifies mil-
lion multiply-accumulate operations required for the inference of a
1-second audio clip. The presented accuracies are reported in terms
of the mean and standard deviation of 3 independent runs.

5.3. Ablation Study

Table 4 presents an ablation study of our system using a CPM
with scaling factors BC=32, CM=2.3 and EXP=3, resulting in a
model with 127k parameters and 29 million MACs. Removing one
component at a time, the results reveal that KD, and even more, the
new CPM architecture, are the dominating performance factors. In
the following, the results are analyzed in detail.
CPM: The setting ”- CP-Mobile” indicates the use of the low-
complexity CP-ResNet used in the top-ranked submission for
DCASE 22 [10] integrated into our setup. CPM outperforms CPR
by 4.54% in accuracy while the two models are of comparable
complexity, demonstrating the increased model capacity of CPM to
distill knowledge from the teacher ensemble. GRN is an integral
part of the CPM blocks, improving accuracy by 1.53% and the
residual connections are also an important factor accounting for an
increase of 1% in accuracy.
KD: KD is an important component of our system, increasing the
accuracy by 3.41%. However, using no KD, CPM still performs
only 0.31% worse in accuracy than the best single teacher model
(CPR4) while having only 3.2% of its parameters, underlining the
efficiency of CPM. Excluding the PaSST or CPR models from

the teacher ensemble leads to a drop in accuracy of 0.81% and
1.22%, respectively, showing that the student benefits from the
performance gain of ensembling Transformers and CNNs but can
not fully exploit the large improvement of the teacher ensemble.
Device Generalization: The results underline that the combination
of DIR and FMS to tackle device generalization works best and us-
ing no device generalization method leads to a severe performance
drop (-1.87% accuracy). In particular, the ability to generalize
to unseen devices suffers with the unseen accuracy dropping by
4.18% in terms of accuracy when neither DIR, nor FMS is used.
Augmentation and Preprocessing: Using a larger FFT window
size compared to the setup used in [10] and applying the shifted
crop dataset augmentation introduced in [29] improves the system’s
performance slightly.

System Accuracy Acc. Diff Unseen Acc.

Our Proposed System 65.66±0.88 Ref. Val. 61.68±1.15

- CP-Mobile 61.12±0.44 -4.54 57.45±0.63

- GRN 64.13±0.58 -1.53 60.51±0.88

- Residual Connections 64.65±0.23 -1.01 61.07±0.38

- KD 62.25±0.41 -3.41 56.72±0.23

- PaSST teachers 64.85±0.21 -0.81 60.70±0.51

- CP-ResNet teachers 64.44±0.37 -1.22 61.19±0.68

- DIR 64.74±0.33 -0.92 59.99±0.23

- FMS 65.15±0.36 -0.51 60.05±0.59

- DIR, FMS 63.79±0.39 -1.87 57.50±0.64

- large FFT window 65.29±0.04 -0.37 61.68±0.34

- Shifted Crops 65.28±0.11 -0.38 61.73±0.07

Table 4: Ablation Study of our proposed setup using CPM (127k
params, 29 million MACs) and removing one component at a time.
Acc. Diff. specifies the difference in accuracy compared to the
full system and Unseen Acc. is the accuracy on devices unseen
during training. All accuracies are reported in terms of the mean
and standard deviation of 3 independent runs.

6. CONCLUSION

In this work, we propose a system that advances the state of the
art in low-complexity Acoustic Scene Classification with two main
contributions: Firstly, we improve Knowledge Distillation by form-
ing teacher ensembles consisting of CNNs and Transformers trained
with Freq-MixStyle and Device Impulse Response augmentation.
Secondly, we introduce an efficient CNN architecture, CP-Mobile,
with residual inverted bottleneck blocks and Global Response Nor-
malization. CP-Mobile can be scaled down to a size of 5.7 kB while
still beating the DCASE baseline system by almost 10 % in accu-
racy. Finally, we assess the importance of our system’s compo-
nents in a detailed ablation study and confirm the high impact of
CP-Mobile and Knowledge Distillation. The proposed system out-
performs the top-ranked approach for the DCASE 22 challenge by
more than 5% in terms of accuracy on the TAU22 development set.
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