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ABSTRACT

Current audio classification models have small class vocabularies
relative to the large number of sound event classes of interest in the
real world. Thus, they provide a limited view of the world that may
miss important yet unexpected or unknown sound events. To ad-
dress this issue, open-set audio classification techniques have been
developed to detect sound events from unknown classes. Although
these methods have been applied to a multi-class context in audio,
such as sound scene classification, they have yet to be investigated
for polyphonic audio in which sound events overlap, requiring the
use of multi-label models. In this study, we establish the problem
of multi-label open-set audio classification by creating a dataset
with varying unknown class distributions and evaluating baseline
approaches built upon existing techniques.

Index Terms— Open-set, multi-label, audio classification,
dataset

1. INTRODUCTION

Audio classification (AC), the machine listening task of identify-
ing sound events in an audio recording, has typically been studied
as two task variants, i.e. multi-class AC, where the input record-
ings are expected to contain only one event, and multi-label AC,
where the input recordings may contain multiple overlapping sound
events. Real-world audio recordings in typical urban, domestic or
environmental settings often contain multiple sound sources of an-
throphony, biophony, and geophony, and thus, are better modeled
as a multi-label AC task.

Multi-label AC is a common machine listening task that has
been applied to various scenarios such as urban sound data [1], ev-
eryday environments [2], and music [3]. Much of this work how-
ever assumes a small fixed class vocabulary, a closed-set task, which
does not reflect real-world scenarios. Everyday sound scenes con-
sist of sources drawn from hundreds if not thousands of classes de-
pending on the class granularity of interest, and people are con-
stantly exposed to novel classes, e.g., those from new or uncommon
technology and animal vocalizations. To the “ears” of these models,
unknown sound classes simply do not exist or — possibly worse —
are confused with known classes. This limited class vocabulary size
can be attributed to the cost and difficulty of annotating large-scale
audio datasets. However, the result of this barrier is a limited view
of the acoustic world by AC models that may miss important yet un-
expected or unknown sound events, hindering machine listening’s
transformative potential.

One solution to this problem is to build models with a dy-
namic vocabulary that can be updated in a lightweight manner with-
out having to retrain the model from scratch. An example of this
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approach is few-shot classification [4], which is often formulated
within a meta-learning framework where a model can learn a new
class from a small ‘support set’ of examples [5]. Prior work has ap-
plied this to tasks such as instrument recognition [6], multi-label au-
dio classification [7], and multi-label drum transcription [8]. How-
ever, this method still requires the user or researcher to supply a
support set for unseen or novel classes [7], and thus, such super-
vised approaches are only useful if you know what you are hoping
to find and have examples of it. In many situations — e.g., urban
noise monitoring, audio accessibility, bioacoustic monitoring — it
is the rare events and unexpected events that are arguably the most
important to detect, i.e., the machine listening equivalent of a “black
swan event” [9]. To this end, we focus on detecting the presence of
unknown classes in addition to known classes, referred to as open-
set modeling.

Open-set modeling has seen research interest in the image do-
main for several years [10, 11], but it has only more recently
gained interest in the audio domain and been applied to tasks such
as domestic sound classification [12], acoustic scene classification
[13, 14], and the related yet distinct task of anomalous sound detec-
tion [15]. However, all of these tasks are binary or multi-class AC
— to the best of our knowledge, open-set modeling has not been
applied to multi-label AC.

As in [12, 10], we define known known (KK) classes as known
(i.e., in-vocabularly) classes seen during training and inference,
known unknown (KU) classes as unknown (i.e., out-of-vocabulary)
classes seen during training and inference, and unknown unknown
(UU) as unknown classes seen only at inference. A fourth category,
unknown known (UK) classes, are classes in which only semantic
or metadata information is available in the absence of discrete la-
bels — this category is not considered in this work. We collectively
refer to KU and UU as unknown classes, and KK as known classes.

We define multi-label open-set AC (MLOS) as the task of as-
signing between 0 and |KK| + 1 class labels to an audio record-
ing, where |KK| is the cardinality of the set of known classes and
+1 refers to the label indicating the presence of an unknown sound
class. Thus, an MLOS model needs to both estimate which known
classes are present as well as decide whether at least one unknown
class is present. This is in contrast to multi-class open-set AC mod-
els which assign only 1 of |KK|+1 class labels to an audio record-
ing.

In this paper, we (1) establish the problem of MLOS, (2) in-
troduce a new dataset with varying unknown class distributions to
investigate this problem, and (3) evaluate baseline approaches com-
prised of combinations of existing machine listening techniques.

2. DATASET

Prior open-set AC datasets are either multi-class [12] or focused on
binary anomalous sound detection [16]. In order to establish the
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MLOS task, we are interested in exploring the effects of polyphony,
and levels of “openness” while working with a large class vocab-
ulary. While few-shot datasets like FSD-MIX-CLIPS [7] meet the
polyphony criteria, they do not have varying levels of “openness”
nor dataset variants where different classes are assigned to the KK,
KU and UU categories. As in [17], we define “openness” as

O∗ = 1−
√

(2× Ctr) / (Ctr + Cte), (1)

where Ctr = |KK∪KU| is the number of classes seen during train-
ing and Cte = |KK ∪ KU ∪ UU| the number of classes seen during
testing. Thus, for larger Ctr , we assign lower values of openness.

To this end, we develop a new dataset of synthetic soundscapes
using open-set criteria. As in FSD-MIX-CLIPS, we use a subset
of FSD50K where each clip has a single ‘present and predominant’
label, i.e., the labeled sound event is the only type of sound present
with the exception of mild background noise [18]. This gives us
7600 source events from 89 classes, each between 0.5s and 4s in
duration. We use only the leaf node labels according to the Audioset
ontology [19]. Hereafter we refer to this subset of FSD50K as the
source dataset.

First, we split the classes into 5 subsets of 18 classes each (ex-
cept for one subset with 17 classes), and from these subsets, we
create 10 variations of class assignments into KK, KU, and UU as
shown in Table1 — 5 with a low degree of openness and 5 with a
high degree of openness, i.e. no KU classes. The openness coeffi-
cients are O∗ = 0.05 or 0.06 for low openness (Ctr = 72 or 71)
and O∗ = 0.13 or 0.14 for high openness (Ctr = 54 or 53).
For each class assignment variation i, we generate an intermediate
dataset called ‘Open-Set Soundscape-i’ (OSS-i), consisting of 10s
44.1kHz synthetic soundscapes using Scaper [20] — 200k train-
ing, 30k validation, and 30k test with no source overlap between
splits. The training and validation sets are synthesized from only
the known class subsets, e.g. in dataset variant 1, from L1-L4 in the
low openness case and H1-H3 in the high openness case (Var. 1 in
Table 1). In both openness cases, the test set is synthesized using
all the subsets. Additionally, we also create a small tuning valida-
tion set using all the subsets for hyperparameter tuning, ensuring no
example overlap with the test set.

In each OSS-i, we maintain the class distribution of the source
dataset as closely as possible while enforcing a minimum of 200
examples per class. Each soundscape has one to four overlapping
source sound events in the foreground, which we place between 0 to
9s in the soundscape. We augment each source with pitch shifting
(-2 to +2 semitones) and time stretching (by a factor of 0.8 to 1.2).
We use uniform random sampling for all augmentations during gen-
eration.

For each OSS-i dataset variant, we generate a dataset of 1s clips
by centering a window on each event in the 10s soundscape and
labeling a class as present if it overlaps with this window. This
yields 10 datasets (5 high, 5 low openness) with ∼500k clips each.

We refer to this as the Open-Set Tagging (OST) dataset and use
it to train and evaluate our models. Both OSS and OST datasets are
publicly available 1.

3. MODELS

In this study, for the sake of brevity we focus on the high openness
MLOS task, as it is the more challenging scenario. Therefore in the
following we use Dk to denote the set of known classes seen during
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Openness Low High
Subset L1 L2 L3 L4 L5 H1 H2 H3 H4 H5
Var. 1 KK KK KK KU UU KK KK KK UU UU
Var. 2 UU KK KK KK KU UU KK KK KK UU
Var. 3 KU UU KK KK KK UU UU KK KK KK
Var. 4 KK KU UU KK KK KK UU UU KK KK
Var. 5 KK KK KU UU KK KK KK UU UU KK

Table 1: Class splits for high and low openness dataset variations

training, and Du for the set of unknown classes seen only during
inference.

In this section, we present five baseline models, two of which
use oracle sources as a way of further exploring the limitations of
these approaches.

3.1. Multi-label

Given a multi-label input example x, the classifier C generates a
logit vector v = C(x) ∈ RN , where N := |Dk| i.e. KK classes
present during training. To estimate whether the input contains a
class in Dk, we take the indices above a threshold λ, i.e. {j : vj >
λ; j ∈ [0, N − 1]}.

Our baseline approach to the MLOS task is to run inference
using a standard multi-label classifier. Then, to predict the unknown
class we use the open-set decision criteria discussed later in this
section.

The classifier consists of two stages. The first stage is a frozen
OpenL3 encoder pre-trained on the environmental subset of Au-
dioset [21], which has shown competitive performance across a va-
riety of audio and music classification tasks in the NeurIPS HEAR
2021 challenge [22]. The encoder input is a 256 frequency bin log-
melspectrogram input, with output embeddings of dimension 6144.

The second stage is a multi-layer perceptron (MLP) with five
dense layers. Each layer consists of 1024 units and ReLU activa-
tion. The number of output units depends on the number of classes
in the dataset variant, i.e. |Dk| classes. This system is depicted in
Figure 1.

The multi-label classifier output has sigmoid activations and is
trained using binary cross-entropy loss. Instead of using a thresh-
old in our experiments, we used an overly-optimistic oracle strat-
egy, picking the m sources with the highest logits, where m is the
polyphony from the ground-truth data. We use the checkpoint with
the best validation loss for evaluation.

3.2. Combinatorial multi-class

In order to isolate the effect of multi-label training, we include a
‘combinatorial multi-class’ model. Here we map each unique label
combination in the OST training set to a class ID, effectively creat-
ing a multi-class model training setup. While OST has around 8000
unique class combinations, we note that this approach would lead
to a ‘combinatorial explosion’ and may be infeasible as the number
of classes and unique combinations increase.

Apart from a categorical cross-entropy loss function and differ-
ent number of output layer units, we use the same architecture and
training setup as described in Section 3.1.

3.3. Source estimates multi-class PIT

Since prior work on open-set AC has been in the multi-class setup,
we include a model with a universal source separation front-end
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Figure 1: Multi-label model consisting of a pre-trained frozen
OpenL3 embedding network and a MLP classifier.
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Figure 2: Source estimates multi-class PIT model consisting of a
separation network and multi-class classifier trained using a permu-
tation invariant loss. The separation network is trained separately
using MixIT, then its weights are frozen as the classifier is trained.

module to convert the MLOS task to a set of multi-class open-set
classification tasks and leverage existing approaches for these sub-
tasks. Related prior work successfully used such a universal source
separation pre-processing step to improve classification precision
in multi-label closed-set birdsong classification [23]. A separation
model generates source estimates for a multi-class classifier that
generates predictions. We hypothesize that the separation model
will also improve performance on the MLOS task, particularly on
unseen known class combinations (which could be misclassified by
an open-set model as unknown if estimated as a whole) and for clips
with high polyphony. However, this approach does come with the
risk of error propagation from the separation model to the classifier
caused by poor source estimates.

Given an input example x, the separation model S generates
eight source estimates si. Using m of these eight source estimates
as input, the multi-class classifier C generates logits vi = C(si) ∈
RN for each source si, where again N := |Dk| , and we use
the class with the max logit as our known class prediction for that
source, i.e. argmax(vi).

The separation network is a TDCN++ model trained on unla-
beled polyphonic mixtures using mixture invariant training (MixIT)
[24]. As the authors of [23, 24] note the importance of training
MixIT on the target domain for quality source estimates, we train
from scratch on data from all variants of the OST dataset for 1M
steps and use the checkpoint with the best validation performance.
Estimating the number of actual sources from the 8 fixed outputs is
a challenging task and a potential failure point. In this paper, we opt
for an overly optimistic scenario and use an oracle pruning strategy
for testing. We pick the m source estimates with the highest en-
ergy, where m is the number of ground-truth sources. We follow
this protocol both during training and inference. An existing risk of
this approach is that the chosen source estimate may only contain
background for input examples with low SNR. Additionally, this
protocol may be sub-optimal if the model over-separates, especially
in examples with low polyphony.

The multi-class classifier has the same architecture as in Section
3.1 , and is trained using a permutation invariant cross-entropy loss
[24]. Since the label assignment is only available at the clip level,

we generate a prediction for each source estimate and compute the
total loss for m! label-source combinations. The best match that
minimizes the total loss is used to update the model weights. We
use the suffix permutation invariant training (PIT) to denote that a
model is trained this way. The model is depicted in Figure 2.

3.4. Oracle sources multi-class PIT

In order to understand the effects of error propagation due to the
separation network, we train a model with a perfect separation
model, i.e. with the oracle sources. These oracle sources when
re-combined yield the OST clips used to train the multi-label classi-
fier model. We use the same model and training setup as in Section
3.3.

3.5. Oracle sources multi-class model

A key limitation of PIT is that it does not guarantee accurate source-
label matching during training. In order to further isolate the effect
that PIT may have on performance, we evaluate a reference multi-
class model with the same architecture trained with oracle sources
using standard cross-entropy loss. Given our modeling choices, this
serves as an expected upper bound in terms of performance, as it is
a true multi-class model.

3.6. Open-set decision criteria

We evaluate two simple open-set decision criteria that have been
used previously in multi-class open-set studies. Here, we use these
techniques both in the multi-class and multi-label configurations,
however, the latter would suffer from false positives in scenarios
with no activity or background noise events.

The first approach is softmax thresholding, where the maximum
softmax probability (MSP) is compared against a threshold δ [25]–
where a model predicts unknown if it is below and known otherwise.
Let ŷ be the classifier output for models without separation, e.g.
ŷ = sigmoid(v), and ŷo ∈ {0, 1} the open-set prediction, with 0
and 1 denoting a known and unknown class prediction respectively,
then

ŷo =
{
1 if max(ŷ) < δ; else 0 (2)

For PIT models and the oracle sources multi-class model, we predict
unknown if any of the m source estimates contain an unknown class:

ŷo =
{
1 if max(ŷi) < δ, for i ∈ [0,m− 1]; else 0 (3)

where ŷi is the classifier output for a source estimate.
The second approach is Openmax [26], which aims to correct

‘overconfident’ model predictions when the example is less likely to
belong to the training distribution of the predicted class. Openmax
re-weights the logit vector by penalizing the top α ranked logits
using models of the training distribution tail for each class. The
class-specific models are parameterized by the Weibull distribution
tail size τ and logit rank limit α. It also computes an unknown class
probability pu based on the degree of recalibration needed, which is
then appended to the updated classifier output. We refer the reader
to [26] for further details.

For models without separation, we compute the updated clas-
sifier output ŷw using the re-weighted logit vector vw, e.g. ŷw =
sigmoid(vw). Then, similar to Equation 2–

ŷo =
{
1 if max(ŷw) < δ ormax(ŷw) = pu; else 0 (4)
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Accuracy (SD)
MSP Openmax

Multi-label 57.4 (2.9) –
Source estimates PIT 54.3 (3.0) –
Oracle sources PIT 59.7 (4.7) 61.3 (3.0)
Combinatorial multi-class 59.1 (1.5) –
Oracle sources multi-class 61.1 (3.8) 61.2 (3.8)

Table 2: Unknown detection results using maximum softmax prob-
ability thresholding (MSP) and openmax. All results are accuracy
averaged over the five dataset variants, with standard deviations in
parentheses.

For models with separation we apply this re-weighting and thresh-
olding protocol to vi, the source estimate logit vectors.

We tune δ, τ , and α on the tuning validation set using Optuna,
a Python package for efficient hyperparameter optimization [27],
and use hyperparameters from the trial that maximizes unknown
detection accuracy.

4. EVALUATION

We evaluate the models separately on closed-set classification and
unknown detection. For the former, we evaluate the model only
on examples without unknown classes. For the latter, we evaluate
the models on all examples at the clip level for a binary classifica-
tion task. We present the unknown detection results in Table 2 and
closed set classification results in Table 3.

From Table 2, we note that the multi-label model is worse than
the oracle sources multi-class model. In this dataset, every example
has at least one source, however, in scenarios where no event may be
present we expect this gap to be larger, as the multi-label model may
generate more false positives during silence or background noise
events.

Combinatorial multi-class is only slightly worse than oracle
sources multi-class. While this is an interesting finding, there are
two key limitations. This model does not scale well as the num-
ber of classes increases, leading to the ‘combinatorial explosion’
issue [28]. Furthermore, this dataset follows the imbalanced source
dataset distribution making certain known classes more likely than
others, meaning that the model does not encounter new class combi-
nations in the test set, leading to an optimistic view of its unknown
detection accuracy. We expect this model to perform poorly in sce-
narios with unseen combinations of known classes, potentially gen-
erating false positives.

Oracle sources PIT does better than the multi-label model by
about 4%, which suggests that a perfect universal source separa-
tor could improve performance on this task. However, the gap is
smaller than expected, potentially due to false positives caused by
overconfident model predictions [26]. We see some evidence of
this in Table 2 where Openmax accuracy for the oracle sources
PIT model is better than its MSP accuracy, suggesting that this
model is falsely overconfident for examples containing unknown
class events.

We also note that oracle sources multi-class is better than oracle
sources PIT by about 2%– since they are both trained on the same
data, the difference must be due to PIT.

Finally, source estimates PIT is not as good as the oracle
sources PIT model, and in fact, performs worse than the multi-label
model. This indicates that more research may be needed for univer-

Micro F1 Macro F1 mAP
Multi-label 0.449 (0.01) 0.349 (0.02) 0.400 (0.02)
Source Estimates PIT 0.407 (0.01) 0.332 (0.01) 0.347 (0.01)
Oracle Sources PIT 0.511 (0.02) 0.461 (0.04) 0.501 (0.04)
Oracle sources multi-class 0.581 (0.01) 0.541 (0.01) 0.590 (0.01)

Table 3: Closed-set classification results on 53 or 54 classes, de-
pending on the dataset variant. All metrics are averaged over the
five dataset variants, with standard deviations in parentheses.

sal source separation models to be useful in this task. Some prior re-
sults suggest that training the classifier together on the input mixture
and source estimates may improve closed-set classification [23], but
it remains to be seen whether this translates to unknown detection
where the model needs to separate out unknown class events as well.

We notice similar trends in closed-set classification (Table 3)
as in unknown detection MSP accuracy. The multi-label model as
well as the oracle sources PIT model perform significantly worse
than the oracle sources multi-class model, which is in line with the
expectation of multi-label classification being a more challenging
task. Oracle sources PIT does better than the multi-label model,
which suggests that a perfect source separation model would be
useful. Lastly, the overall modest performance of the oracle sources
multi-class model on both closed- and open-set tasks suggests that
better audio representations are also needed to improve perfor-
mance.

5. DISCUSSION AND CONCLUSION

In this work, we introduced the multi-label open-set audio classi-
fication (MLOS) task and developed a synthetic dataset with vary-
ing unknown class distributions. We then presented several baseline
models using combinations of existing machine listening techniques
and evaluated their performance on known class and unknown class
metrics.

We show that MLOS is a challenging task that existing ap-
proaches alone cannot adequately solve. In our study, we find that a
perfect source separation model may be useful for MLOS, but fur-
ther research is needed for universal source separation models to
provide similar improvements in open-set classification.

While we see some interesting results, some other questions
were raised, such as how unseen known class combinations might
affect unknown class detection, particularly for the multi-label and
combinatorial multi-class models. We plan to evaluate this by vary-
ing vocabulary and dataset size to control the ratio of seen and un-
seen known class combinations in the test set.

Moreover, we consider here a simplistic data scenario where
there is always at least one sound present. We plan to investigate
how the inclusion of background event classes would affect some
of the models discussed here, such as the multi-label and source
estimates multi-class PIT.

By sharing the dataset and these baseline results, we hope to
invite further interest from the community to this under-explored
area of research.
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