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ABSTRACT

We proposed Audio Difference Captioning (ADC) as a new exten-
sion task of audio captioning for describing the semantic differences
between input pairs of similar but slightly different audio clips.
The ADC solves the problem that conventional audio captioning
sometimes generates similar captions for similar audio clips, fail-
ing to describe the difference in content. We also propose a cross-
attention-concentrated transformer encoder to extract differences by
comparing a pair of audio clips and a similarity-discrepancy dis-
entanglement to emphasize the difference in the latent space. To
evaluate the proposed methods, we built an AudioDiffCaps dataset
consisting of pairs of similar but slightly different audio clips with
human-annotated descriptions of their differences. The experiment
with the AudioDiffCaps dataset showed that the proposed methods
solve the ADC task effectively and improve the attention weights
to extract the difference by visualizing them in the transformer en-
coder.
Index Terms: audio difference captioning, contrastive learning,
crossmodal representation learning, deep neural network

1. INTRODUCTION

Audio captioning is used to generate the caption for an audio
clip [1–10]. Unlike labels for scenes and events [11–15], captions
describe the content of the audio clip in detail. However, conven-
tional audio captioning systems often produce similar captions for
similar audio clips, making it challenging to discern their differ-
ences solely based on the generated captions. For instance, suppose
two audio clips of heavy rain are input into a conventional caption-
ing system. The system will generate a caption describing the con-
tent of each, like “It is raining very hard without any break” and
“Rain falls at a constant and heavy rate”1 as illustrated in Fig. 1(a).
The difference, such as which rain sound is louder, is difficult to
understand from the generated captions in this case.

To address this problem, we propose Audio Difference Caption-
ing (ADC) as a new extension task of audio captioning. ADC takes
two audio clips as input and outputs text explaining the difference
between two inputs as shown in Fig. 1. We make the ADC clearly
describe the difference between the two audio clips, such as “Make
the rain louder,” which describes what and how to modify one au-
dio clip to the other in the instruction form, even for audio clips
with similar texts. Potential real-world applications include ma-
chine condition and healthcare monitoring using sound by caption-
ing anomalies that differ from usual sounds.

The ADC task has two major challenges: different content de-
tection and detection sensitivity. Since the difference between a pair
of audio clips can be classes of contained events or an attribute, such

1These captions were taken from the Clotho dataset [2]
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Figure 1: Conceptual diagram of conventional audio captioning and
audio difference captioning. Audio difference captioning describes
the difference between pair audio clips, while conventional audio
captioning describes the contents of each.

as loudness, the ADC needs to detect what difference to describe.
When the difference lies in an attribute, the ADC needs to be sensi-
tive enough to detect the magnitude of the attribute, such as rain is
hard or moderately shown in the example in Fig. 1.

To handle these challenges, the ADC should extract features of
difference based on the cross-reference of two audio clips. These
features should carry enough information to differentiate critical at-
tributes such as loudness. A typical choice of a feature extractor
could be pre-trained models to classify labels [16–18]. However,
these models learn to discriminate sound event classes, learning
what is common while ignoring subtle differences such as raining
hard or quietly unless the class definition covers that.

To meet the requirements of the ADC mentioned above, we pro-
pose (I) a cross-attention-concentrated (CAC) transformer encoder
and (II) a similarity-discrepancy disentanglement (SDD). The CAC
transformer encoder utilizes the masked multi-head attention layer,
which only considers the cross-attention of two audio clips to ex-
tract features of difference efficiently. The SDD emphasizes the dif-
ference feature in the latent space using contrastive learning based
on the assumption that two similar audio clips consist of similar and
discrepant parts.

We demonstrate the effectiveness of our proposals using a
newly built dataset, AudioDiffCaps, consisting of two similar but
slightly different audio clips synthesized from existing environmen-
tal sound datasets [11,15] and human-annotated difference descrip-
tions. Experiments show that the CAC transformer encoder im-
proves the evaluation metric scores by making the attention focus
only on cross-references. The SDD also improves the scores by
emphasizing the differences between audio clips in the latent space.
Our contributions are proposals of (i) the ADC task, (ii) the CAC
transformer encoder and SDD for solving ADC, (iii) the AudioD-
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iffCaps dataset, and (iv) demonstrating the effectiveness of these
proposals.

2. AUDIO DIFFERENCE CAPTIONING

We propose ADC, a task for generating texts to describe the differ-
ence between two audio clips. ADC estimates a word sequence w
from the two audio clips x and y.

The general framework to solve ADC includes three main func-
tions: audio embedding, audio difference encoding, and text de-
coding. Audio embedding calculates two audio embedding vec-
tors from two audio clips, respectively. Audio difference encod-
ing captures the difference between two audio embedding vectors.
Text decoding generates a description of the differences from cap-
tured differences. Audio embedding and audio difference encoding
require approaches specific to ADC. In particular, difference en-
coding is the function unique to audio difference captioning. This
function requires a model structure to capture the subtle differences
between two audio clips, unlike conventional audio captioning that
captures the content of a single audio clip. Moreover, the sensitiv-
ity to the subtle difference between two similar audio clips is also
necessary for audio embedding. The pre-trained audio embedding
models widely used for conventional environmental sound analysis
tasks are often trained for classification tasks and are suitable for
identifying predefined labels. Consequently, the outputs of these
pre-trained audio embedding models are not sensitive to the sub-
tle differences between audio clips with the same label. Therefore,
learning to emphasize the differences between similar audio clips in
the latent space is necessary when applying pre-trained audio em-
bedding models to the ADC.

3. PROPOSED METHOD

Based on the above discussion, we propose the ADC system il-
lustrated in Fig. 2. Our system consists of an audio feature ex-
tractor (red), difference encoder (blue), text decoder (green), and
similarity-discrepancy disentanglement (purple).

3.1. Audio feature extractor
The audio feature extractor uses a pre-trained audio embedding
model to calculate audio embedding vectors. Two audio clips x and
y are the input, and the audio embedding vectors corresponding to
the clips X ∈ RH×Tx and Y ∈ RH×Ty are the output, where H
is the size of hidden dimension, Tx is the time length of X , and Ty

is the time length of Y

3.2. Difference encoder
The difference encoder extracts information about the differences
between the two audio clips from audio embedding vectors X
and Y . To extract difference information efficiently, we utilize
a cross-attention-concentrated (CAC) transformer encoder as the
main function of the difference encoder. The CAC transformer
encoder utilizes the masked multi-head attention layer, allowing
only mutual cross-attention between two audio clips by the atten-
tion mask illustrated in the upper right of Fig. 2.

The detailed procedure is as follows. First, special tokens that
indicate the order of the audio clips X ∈ RH×1 and Y ∈ RH×1

are concatenated at the beginning of X and Y , respectively. Next,
these two sequences are concatenated to make the input of the dif-
ference encoder Z like Z = [X ,X,Y,Y ]. Then, positional en-

coding P is applied to Z. Finally, P(Z) is input to CAC trans-
former encoder to obtain the output Ẑ = [X̂ , X̂, Ŷ, Ŷ ].

3.3. Text decoder
The transformer decoder is utilized as a text decoder like as [5].
The text decoder calculates word probability from the output of the
difference encoder Ẑ.

3.4. Similarity-discrepancy disentanglement
The similarity-discrepancy disentanglement (SDD) loss function
is an auxiliary loss function aimed at obtaining a difference-
emphasized audio representation. When there is an explainable dif-
ference between two audio clips, these clips consist of similar and
discrepant parts. To introduce this hypothesis, we design contrastive
learning to bring similar parts closer and keep discrepant parts. We
propose two types of implementations that apply SDD to the in-
put of the difference encoder Z or the output of it Ẑ, as shown in
Fig. 2, and call the former and latter implementations early and late
disentanglement, respectively.

We explain the procedure in the case of early disentanglement.
Note that the case of late disentanglement only replaces Z with Ẑ.
First, Z is split along the hidden dimension and assigned to similar
and discrepant parts like in the upper left illustration of Fig. 2. If
Z ∈ RH×(Tx+Ty+2), Z is split into similar part ZS and discrepant
part ZD like

ZS = [XS,XS,YS,Y S] ∈ R(H/2)×(Tx+Ty+2), (1)

ZD = [XD,XD,YD,Y D] ∈ R(H/2)×(Tx+Ty+2). (2)

Then, the SDD is performed by LSDD = LS + LD, where

LS = SymInfoNCE(Φ([XS,XS]),Φ([YS,Y S])), (3)
LD = PairCosSim(Ψ([XD,XD]),Ψ([YD,Y D])), (4)

SymInfoNCE is the symmetric version of the InfoNCE loss used
in [19], PairCosSim is the cosine similarity for each correct
data pair, Φ and Ψ are embedding networks consisting of the
bidirectional-LSTM and average pooling, and LSDD is the final
value of the SDD loss function. That is, the SDD loss function
views [XS,XS] and [YS,Y S] as similar parts and brings them
closer by using LS and views [XD,XD] and [YD,Y D] as dis-
crepant parts and keeps them apart by LD.

The entire loss function L is the weighted sum of cross-entropy
loss for word prediction LCE and the SDD: L = LCE + λLSDD,
where λ is a weighting parameter.

4. EXPERIMENT

Experiments were conducted to evaluate the proposed CAC trans-
former encoder and SDD loss function. We constructed the Au-
dioDiffCaps dataset consisting of pairs of similar but slightly dif-
ferent audio clips and a human-annotated description of their differ-
ences for the experiments.

4.1. AudioDiffCaps dataset
The constructed AudioDiffCaps dataset consists of (i) pairs of sim-
ilar but slightly different audio clips and (ii) human-annotated de-
scriptions of their differences.

The pairs of audio clips were artificially synthesized by mixing
foreground event sounds with background sounds taken from exist-
ing environmental sound datasets (FSD50K [15] and ESC-50 [11])
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Figure 2: Model architecture of our proposed method. The cross-attention-concentrated transformer encoder uses an attention mask illustrated
in the upper left. The similarity-discrepancy disentanglement is conducted by symmetric InfoNCE loss and pairwise cosine similarity. The
input to them is either the input or output of the cross-attention-concentrated transformer encoder.

using the Scaper library for soundscape synthesis and augmenta-
tion [20]. We used the same mixing procedure as our previous
work [21]. Data labeled rain or car passing by in FSD50K was
used as background, and six foreground event classes were taken
from ESC-50 (i.e., data labeled dog, chirping bird, thunder, foot-
steps, car horn, and church bells). Each created audio clip was 10
seconds long. The maximum number of events in one audio clip
was two, with 0-100% overlap (no overlap-range control applied).
Each foreground event class had 32 or 8 instances in the devel-
opment or evaluation set, respectively. Similar to previous work,
we focused on the three types of difference: increase/decrease of
background sounds, increase/decrease of sound events, and addi-
tion/removal of sound events. The development and evaluation sets
contained 5996 and 1720 audio clip pairs, respectively. (That is,
development and evaluation sets contained 11992 and 3440 audio
clips.)

The human-annotated descriptions were written as instruction
forms explaining ”what and how” to change the first audio clip to
create the second audio clip. In the preliminary study, we found
that declarative sentences, in some cases, tend to use ordinal num-
bers such as “First sound is louder than second sound”. Since these
cases do not express what the actual difference is, the AudioDiff-
Caps dataset uses instruction forms with a fixed direction of change
from the first audio clip to the second one, e.g., ”Make the rain
louder” 2 . A wider variety of descriptions explaining the same
concept, such as declarative sentences, should be included in fu-
ture works. The presentation order of the pair to the annotator was
randomly selected. Annotators were five naı̈ve workers remotely
supervised by an experienced annotator. Each pair of audio clips
in the development set had between 1 and 5 descriptions (a total of
28,892) while each pair in the evaluation set had exactly five de-
scriptions assigned to it (a total of 8600).

4.2. Experimental conditions
We used 10% of the development set for validation. The opti-
mizer was Adam [22]. The number of epochs was 100. We
used the BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr [23],
SPICE [24], and SPIDEr [25] as evaluation metrics. They were
also used for conventional audio captioning [26].

We used BYOL-A [27], a pre-trained audio embedding model,
as the audio feature extractor in our ADC implementation, and we
fine-tuned the BYOL-A throughout experiments. The transformer

2The dataset is available at https://github.com/nttcslab/au
dio-diff-caps.

encoder and decoder used the official implementation of PyTorch.
The number of layers was 1. The hidden size was 768. The num-
ber of heads was 4. The activation was RELU. The dimension of
the feedforward layer was 512. The dropout rate was 0.1. For the
attention mask of the transformer encoder, we compared two types;
one with the proposed cross-attention mask and the other without a
mask. The text decoder used the teacher forcing algorithm during
training and the beam search algorithm [28, 29] during inference.
The value of λ was empirically set to 0, 0.5, 1.0, or 2.0.

4.3. Results
The results of evaluation metrics are shown in Table 1, where bold
font indicates the highest score, “Mask” and “Disent.” indicate the
attention mask utilized in the transformer encoder and input of SDD
loss function, respectively. When the CAC transformer encoder was
evaluated by comparing the two lines above, the proposed method
had superior or equivalent scores to the conventional method in all
evaluation metrics. There was no significant difference in the eval-
uation metrics related to the degree of matching with single-word
references, such as BLEU-1. One likely reason is that the scores
above a certain level can be obtained by outputting words in arbi-
trary sentences, such as “a” and “the” in these metrics. In contrast,
the scores of BLEU-4, ROUGE-L, CIDEr, and SPIDEr, affected by
the accuracy of consecutive words, were improved using the pro-
posed cross-attention mask. Therefore, the proposed cross-attention
mask was thought to make the feature extraction of differences more
efficient and simplify the training of the text decoder. As a result,
phrase-level accuracy was improved.

The effect of SDD was verified from the results of the second
to eighth lines. The results in (a) and (b) were the conventional
transformer without cross attention mask or SDD loss and the CAC
transformer without SDD loss (λ = 0) Ones from (c) to (h) were
the result when using early/late disentanglement. Since the scores
of BLEU-4, ROUGE-L, CIDEr, and SPIDEr improved under all
conditions comparing (b) and others, the SDD loss function was
effective for the audio difference captioning task. The improvement
in the case of late disentanglement (f), (g), and (h) was remarkable,
and the results obtained the best scores in all evaluation metrics
with late disentanglement. In other words, it was essential to use
the information to be compared to decompose the similar part and
the different parts in the feature amount space. That corresponds to
the difference determined depending on the comparison target.

Fig. 3 shows one of the evaluation data and estimated caption
and attention weight of the transformer encoder from each system.
The leftmost colomn is the Mel-spectrogram of the two input audio
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Table 1: Results of evaluation metrics
ID System Mask Disent. BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE SPIDEr

(a) Baseline N/A N/A 67.1 31.7 24.3 56.9 82.7 19.5 51.1
(b) CAC transformer Cross N/A 67.0 33.4 25.2 59.5 90.2 19.5 54.9

CAC transformer
(c) w/ Early SDD (λ = 0.5) Cross Early 67.0 33.7 25.3 59.6 91.8 19.4 55.6
(d) w/ Early SDD (λ = 1.0) Cross Early 66.8 32.2 25.3 59.3 91.7 19.5 55.6
(e) w/ Early SDD (λ = 2.0) Cross Early 66.9 33.5 25.3 59.6 92.8 18.7 55.8

(f) w/ Late SDD (λ = 0.5) Cross Late 70.3 39.2 26.4 61.6 97.6 21.3 59.4
(g) w/ Late SDD (λ = 1.0) Cross Late 69.9 38.3 26.3 61.5 96.3 21.2 58.7
(h) w/ Late SDD (λ = 2.0) Cross Late 69.9 39.5 26.3 61.3 97.1 22.6 59.9

First audio

Second audio

Reference caption:
increase the pitch and volume 
of the dog barks

Output caption:
increase the volume of and thunder
the bird the the

Output caption:
amplify the rain and the and 
thunder thunder the the
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amplify the sound of the dog

(a) Baseline (b) Cross-attention-concentrated 
transformer

(h) Cross-attention-concentrated 
transformer 

w/ Late disentanglement(λ=2.0)

B
ar

k
B
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k

Figure 3: Examples of output caption and attention weights. The leftmost row was the Mel-spectrogram of two audio clips and one reference
caption. The three on the right were the attention weights of the transformer encoder and the output caption.

clips and one of the reference captions. The three on the right are
the attention weight of the transformer encoder and output caption,
where the attention weight shows the average of multiple heads.
The audio clips on the left and above the weights correspond to the
input and memory of the transformer, respectively. The area col-
ored pink and yellow on the weights corresponds to the dog bark-
ing. Since there was a difference in the loudness of the dog barking
between the two clips, the attention was expected to focus on areas
where pink and yellow overlap to extract the difference.

First, in (a), since the attention weight was not constrained, it
was also distributed widely to areas other than the above compared
with the other two. On the other hand, the attention weights of
(b) and (h) concentrated on areas where pink and yellow overlap
since the attention of the same input and memory was unavailable.
Comparing (b) and (h), while the attention of the part containing
the barking of the dog in the memory was large at any time-frame
in (b), more attention was paid to the pink and yellow overlapping
areas where both input and the memory contain the barking of the
dog in (h). Since the late disentanglement required that similar and
discrepant parts be retained in the output of the transformer encoder
calculated using these attention weights, it was thought that the late
disentanglement induced attention to be paid to the part where there
was a difference when comparing the two sounds instead of paying
attention to the parts that are likely to exist the difference compared
with the distribution of training data, such as a dog barking.

5. CONCLUSION

We proposed Audio Difference Captioning (ADC) as a new exten-
sion task of audio captioning for describing the semantic differ-
ences between similar but slightly different audio clips. The ADC
solves the problem that conventional audio captioning sometimes
generates similar captions for similar but slightly different audio
clips, failing to describe the difference in content. We also pro-
pose a cross-attention-concentrated transformer encoder to extract
differences by comparing a pair of audio clips and a similarity-
discrepancy disentanglement to emphasize the difference feature
in the latent space. To evaluate the proposed methods, we newly
built an AudioDiffCaps dataset consisting of pairs of similar but
slightly different audio clips and a human-annotated description of
their differences. We experimentally showed that since the attention
weights of the cross-attention-concentrated transformer encoder are
restricted only to the mutual direction of the two inputs, the dif-
ferences can be efficiently extracted. Thus, the proposed method
solved the ADC task effectively and improved the evaluation metric
scores.

Future work includes utilizing a pre-trained generative lan-
guage model such as BART [30] and applying a wider variety of
audio events and types of differences.
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