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ABSTRACT

Attention mechanisms have been widely used in a variety of sound
event detection (SED) tasks, owing to their ability to build interde-
pendencies among channels or spatial locations. The existing state-
of-the-art (SOTA) architectures and attention modules incorporated
in SED have a high computational cost in terms of the number of
parameters. To address this issue, we propose a lightweight mod-
ule utilizing triplet attention on an inverted residual network (IRN)
referred to as an inverted residual triplet attention module (IRTAM)
for replacing the standard 2D convolutional neural network. The
IRTAM captures cross-dimensional interdependencies using the ro-
tation operation followed by residual transformations with a three-
branch structure embedded in IRN. On DCASE 2022 Task 4 valida-
tion set, the proposed lightweight module improves the performance
of the baseline by 34.1% in terms of polyphonic sound event detec-
tion score and achieves SOTA results with only 27.6% parameters
of the baseline.
Index Terms: sound event detection, low-complexity, triplet atten-
tion, inverted residual network

1. INTRODUCTION

Sounds help in better understanding our surroundings and in detect-
ing environmental changes. The ability to recognize and classify
sound events in our surroundings is inherent in the human body.
The sound event detection (SED) systems automate this process to
detect the sound events to mark their corresponding onset and offset.
It has important practical applications as well as theoretical signif-
icance and has been applied to audio surveillance in environments
such as smart-homes, cities, and monitoring biodiversity.

Real-world audio recordings frequently contain numerous over-
lapping sound occurrences. Recent advances in predicting and
recognizing these overlapping events have shifted from traditional
methods like Gaussian mixture models [1], hidden Markov mod-
els [2], and support vector machines [3] to advanced deep learning
techniques. The recent success of convolutional recurrent neural
networks (CRNNs) [4] and transformer [5] structures have achieved
state-of-the-art (SOTA) results in the field of SED. These modern,
cutting-edge structures demand high computing resources that are
beyond the capacity of many embedded and mobile applications.
Therefore, reducing the number of parameters in a SED model al-
lows the method to be fit for systems with limited resources while
also decreasing the training time.

Most of the previously built systems [6, 7] proposed the use of
depthwise separable convolutions and showed the system’s effec-
tiveness with reduced parameters. Another way to target an effec-
tive low-complexity SED system is to use attention mechanisms [8].
In human perception, attention refers to the process of selectively

concentrating on parts of the given information while ignoring the
rest. This mechanism aids in the refinement of perceived infor-
mation while preserving its context. In the case of deep learning
systems with a basic building block as the 2D convolutional layer,
filters capture local spatial patterns along all input channels and gen-
erate feature maps jointly encoding the time-frequency and channel
information.

Several works have been aimed at capturing either spatial or
channel attention, done by building dependencies among channels
or weighted spatial masks for spatial attention. One such promising
approach is a component called the squeeze and excitation (SE) [9]
block, which can be seamlessly integrated into the convolutional
neural network (CNN). This SE block removes the spatial depen-
dency by using global average pooling to learn a channel-specific
descriptor, which is then used to rescale the input feature map to
highlight only useful channels. The SE block was succeeded by
the convolutional block attention module (CBAM) [10], which em-
phasized the importance of providing robust representative attention
by combining spatial and channel attention. This method of com-
bining spatial attention and channel attention improved the perfor-
mance compared to the SE block. However, most attention modules
add substantial computational overhead, and stacking these com-
plex modules usually ignores the interdependence between spatial
dimensions and channel dimension of the input feature.

In this work, we devote to incorporating cross-dimensional in-
teraction while computing attention weights to provide rich feature
representations for low-complexity SED systems by a novel inverted
residual triplet attention module (IRTAM) that uses a three-branch
structure, where each branch is responsible for aggregating cross-
dimensional interactive features. We summarize the major contri-
butions of this work as follows:

• Inspired from MobileNetV2 [11], we propose to incorporate an
inverted residual network (IRN) with a linear bottleneck to re-
place the standard 2D convolution block. The IRN makes the
SED model suitable to be deployed for real-time applications
on low computational devices.

• We propose to introduce a triplet attention [12] module into the
IRN at a negligible computational overhead to effectively learn
cross-dimensional interaction. The attention module is made
up of three branches, each of which is responsible for capturing
the cross-dimensional interaction between the input’s spatial
dimensions and channel dimension.

We consider the two-stage system developed by [13–15] for the de-
tection and classification of acoustic scenes and events (DCASE)
2022 Task 4 participation for the studies in this work. We also used
data augmentation and adaptive post-processing techniques to in-
crease the robustness of the developed system.
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2. SOUND EVENT DETECTION SYSTEM

2.1. Baseline

The baseline [16] architecture, adopted from the DCASE Task 4
Challenge 2022, is a CRNN that combines a CNN and a recurrent
neural network (RNN). The CNN block is composed of 7 layers,
each with 16, 32, 64, 128, 128, 128, and 128 filters. The kernel
size for each convolutional layer is 3× 3 and each layer is followed
by a Gaussian error linear unit activation and batch normalization.
For frequency and temporal pooling, the average pooling layer is
employed, and its sizes are [[2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1,
2], [1, 2]], respectively. The RNN block is made up of two layers
of 128 bidirectional gated recurrent units (Bi-GRUs), resulting in a
total of 1.1M parameters. After the RNN block comes the attention
pooling layer, which is the product of multiplying a linear layer with
softmax activations and a linear layer with sigmoid activations. The
baseline employs the mean-teacher (MT) model, which updates the
teacher model’s weights using an exponential moving average from
the student model.

2.2. Inverted residual network (IRN)

Taking inspiration from MobileNetV2 [11], we propose to incor-
porate IRN to replace the standard 2D convolutions, as depicted
in Figure 1 (a). The proposed replacement has a distinct property
that allows the network expressiveness (encoded by expansion lay-
ers) to be separated from its capacity (encoded by bottleneck in-
puts). Further, it allows lightweight model implementation for low-
computational embedded systems. The block uses depthwise sepa-
rable convolutions to replace the fully convolutional operations with
a factorized version to split the standard convolution into two sepa-
rate layers. The block performs three separate convolutions. First, a
pointwise convolution is used to expand the low-dimensional input
feature map to a higher-dimensional space. Followed by a depth-
wise convolution, achieving spatial filtering. Finally, the spatially
filtered feature map is projected back to a low-dimensional sub-
space using another pointwise convolution. Figure 1 (a) shows the
residual link between low-dimensional feature maps.
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Figure 1: The proposed architectures (a) IRN with attention module
(b) triplet attention module for SED.

2.3. Triplet attention

We propose to incorporate an effective channel attention module,
namely, triplet attention [12], into the IRN. The cross-dimensional
interaction is captured by this parameter-free attention mechanism,
which may be integrated into other standard networks. In traditional
ways of computing channel attention, there is a significant loss of
spatial information as the input tensor is spatially decomposed into
one pixel per channel by employing global average pooling. This
leads to a loss of interdependence between the channel dimension
and spatial dimension on these single pixels. Further, as the channel
attention and spatial attention in [9] are computed independently of
each other, the relationship between the two is not considered. To
address this issue, we propose capturing cross-dimensional interac-
tion with no dimensionality reduction by adding triplet attention to
the IRN for SED applications.

The triplet attention is composed of three parallel branches,
built to capture dependencies between the (C, F), (C, T), and (F, T)
of the input feature, where C, F, T represent the channel, frequency,
time feature maps, respectively. Two of the branches capture the
cross-dimension interaction between the channel dimension C and
either the spatial dimension F or T. The last, final branch resembles
CBAM, which is used to build spatial attention. For each branch,
the input is permuted as shown in Figure 1 (b), and then it is passed
through Z-pool. The Z-pool layer reduces the zeroth dimension to
two by concatenating average pooling and max pooling across that
dimension. This helps to retain a rich representation while shrinking
the depth, resulting in less computational requirement. The opera-
tion of Z-pool is as follows:

Z -pool(x ) = [MaxPool0d(x), AvgPool0d(x)] (1)

where 0d is the 0th-dimension along which the operation is applied
and x is the input tensor. The resultant from the Z-pool is passed
through a standard convolutional layer of kernel size 7 × 7, fol-
lowed by batch normalization. The attention weights are generated
by passing the tensor through a sigmoid function and are applied
to the input tensor for the respective branch. The resulting output
is then rotated back to its original state to retain the original input
shape. The results of all three branches (y1, y2, y3) are aggregated
with straightforward averaging as given below:

y =
1

3
(y1 + ȳ2 + ȳ3) (2)

where ȳ2 and ȳ3 represents the 90◦ clockwise permutation to retain
the original input shape of (C × T × F).

2.4. Proposed architecture

We employed the IRN described in Section 2.3 to replace the stan-
dard 2D CNNs, which results in a smaller amount of parameters.
The triplet attention module was plugged in after the depthwise sep-
arable convolution in the IRN, as shown in Figure 1 (a). This newly
generated module is referred to as IRTAM, which enables the acqui-
sition of more blended cross-dimensional feature information. The
updated architecture has the same number of layers, but the size of
the feature map in each module is reduced to 16, 32, 64, 64, 64, 64,
and 64, respectively. The updated architecture consists of 2 layers
of Bi-GRU with 64 hidden units, resulting in a total of 304k param-
eters for the entire model compared to the 1.1M parameters in the
baseline. In summary, the updated architecture with the proposed
replacement has 27.6% of the parameters of the baseline.
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Table 1: Summary of DCASE 2022 Task 4 development set.
Clips Description
10,000 Synthetic strongly labeled data
3,470 Real strongly labeled data (external set)
1,578 Real weakly labeled data
14,412 In-domain unlabeled data
1,168 Real strongly labeled validation data
2,500 Synthetic strongly labeled validation data

3. EXPERIMENTAL SETUP

3.1. Dataset

In our experiments, we used the DCASE 2022 Task 4 dataset, which
is identical to the DCASE 2023 Task 4A dataset and consists of 10-
second audio clips extracted from AudioSet or constructed using
isolated sound events to simulate a domestic environment. The split
for the development training set is reported in Table 1. Additionally,
the public evaluation (“YouTube” evaluation) collection consists of
692 YouTube clips.

3.2. Pre-processing

The audio clips are first re-sampled at 16 kHz to a mono channel.
They are then segmented using a window size of 2048 samples with
a hop length of 256 samples. The spectrograms of segmented wave-
forms are extracted using the short-time Fourier transform. Then,
log-mel spectrograms are created by using mel-filters in the fre-
quency domain of 0 to 8 kHz, followed by a logarithmic operation.
Silence is used to pad the clips that are less than 10-seconds long.

3.3. Two-stage system for SED

We incorporate the two-stage system developed by [13–15] for
DCASE 2022 Task 4 participation, depicted in Figure 2. In this sys-
tem, Stage-1 focuses on audio-tagging (AT), whereas Stage-2 im-
proves SED by using the reliable pseudo-labels generated by Stage-
1. To extract the embeddings in Stage-1, we used a CNN-14-based
pre-trained audio neural network [17] as the feature extractor. The
embeddings extracted are fed into the Bi-GRU, which has 2 lay-
ers with 1024 hidden units. Stage-1 is trained using a strongly la-
beled set converted into weak predictions referred to as a weakified
set, a weakly labeled set, and an unlabeled set with 64 mel-bins, to
improve AT performance, as shown in Figure 2. Additionally, the
AT system (Stage-1) predicted unlabeled set and employed those as
pseudo-weak labels in Stage-2 training with 128 mel-bins. In Stage-
2, we used the proposed lightweight architecture with 304k param-
eters described in Section 2.4. It is trained on a pseudo-weakly la-
beled set in addition to the strongly labeled and the weakly labeled
set in a supervised manner. In training, the weak and pseudo-weak
sets were merged. Both strongly and weakly labeled samples were
assigned a weight of 1 using the baseline system’s loss functions.
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Figure 2: Two-stage system, with Stage-1 focusing on AT and
Stage-2 focusing on SED.

3.4. Training process

For all experiments, the batch size is 48 (1/4 strong set, 1/4 weak set,
1/2 unlabeled set). We employed the Adam optimizer with a max-
imum learning rate of 0.001 and a learning rate ramp-up over the
first 50 epochs of the optimization process. A total of 100 epochs
are used to train Stage-1, and 200 epochs are used to train Stage-2.
The weak training data was used to generate a 90% training set and
a 10% validation set. Then the validation is performed on the 10%
held-out weak subset and on the strongly labeled synthetic valida-
tion set. The system was built with PyTorch Lightning and trained
on an NVIDIA Quadro RTX 5000 GPU.

3.5. Additional methods

We used several data augmentation techniques to artificially gen-
erate more data and improve the model’s robustness during the
training in both stages. We employed time-masking [18], frame-
shifting, mixup [16], and Gaussian noise addition in Stage-1 and
time-masking, frame-shifting, mixup and frequency-masking [18]
in Stage-2. We also adopted adaptive post-processing [19] in all
the experiments, where the median filter window sizes are different
for each event category, calculated heuristically based on the vary-
ing length of each event in real life. Furthermore, for each class,
we used probability value correction [20], in which we multiplied
the probability generated by the model by a magnification factor to
correct the probability to a maximum value of 1. For inference tem-
perature tuning as in [21] a temperature factor of 2.1 is employed.
In our final developed system, we also used the external set released
by DCASE 2022 Task 4 organizers during training, with each stage
employing MT and interpolation consistency training (ICT) [22] to
utilize the unlabeled training data.

3.6. Evaluation metric

In our studies, we used polyphonic sound event detection scores
(PSDS) [23] introduced in the DCASE 2022 Task 4 as a perfor-
mance metric to evaluate the systems. The PSDS is more resistant
to labeling subjectivity, allowing for the interpretation of both the
ground truth and the detection of temporal structure. It computes
a single PSDS using polyphonic receiver operating characteristic
curves, allowing for comparison regardless of the operating point.
Furthermore, it can be customized for a variety of applications, en-
suring that the desired user experience is achieved. As a result,
it overcomes the limitations of traditional event F-scores based on
collars. We compute the PSDS in our studies using two different
scenarios that emphasize different system properties. Scenario-1
requires the system to respond quickly to event detection, focus-
ing on the temporal localization of the sound event. Scenario-2, on
the other hand, focuses on preventing class confusion rather than
reaction time. The greater the values for PSDS1 and PSDS2, the
better for both scenarios. Notably, the PSDS metric employed here
adheres to the DCASE 2022 Task 4 protocol and differs from the
threshold-independent PSDS used in DCASE 2023 Task 4A.

4. RESULTS AND ANALYSIS

4.1. Proposed IRTAM

We consider the two-stage framework described in the previous sec-
tion for our studies with low-complexity SED systems.
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Table 2: Performance comparison showing the importance of the
proposed method on DCASE 2022 Task 4 validation set.

System PSDS1 PSDS2 #Parameters

Baseline 0.351 0.552 1.1M

IRN 0.343 0.519 301k

IRN + SE 0.359 0.521 442k

IRN + CA 0.419 0.694 333k

IRN + Triplet Attention (IRTAM) 0.440 0.708 304k
+ data augmentation 0.446 0.702 304k
+ external set 0.457 0.712 304k
+ ICT 0.471 0.710 304k
+ median filtering 0.480 0.727 304k
+ probability correction 0.483 0.728 304k

First, in Stage-2 used for inference, we replace the standard
2D CNNs in the baseline with the proposed IRN described in Sec-
tion 2.3, resulting in a reduction of parameters from 1.1M in the
baseline to 301k. From Table 2, we observe a minor degradation in
the performance with a decrease in PSDS1 from 0.351 to 0.343 and
in PSDS2 from 0.552 to 0.519 owing to the reduction in the number
of parameters. Following our proposed design, we next incorporate
an attention module in the IRN after the depthwise separable convo-
lution layer to assist the model in learning the frequency-dependent
patterns and feature interdependencies between channels and time-
frequency locations.

We are also interested in comparing the performance of the pro-
posed IRTAM (IRN + triplet attention) with widely popular SE
attention and another recent method, namely, coordinate attention
(CA) [24] incorporated in IRN. From Table 2, we observe that the
SED performance increases with the introduction of both SE and
CA modules. However, on comparing their performance to our pro-
posed IRTAM, we find that IRN with triplet attention (IRTAM) per-
forms better than both the other attention modules considered. It is
also observed that the increase in the number of parameters for IR-
TAM is very negligible compared to that with SE and CA. Thus,
these studies show the effectiveness of the proposed low-complexity
IRTAM module, specifically due to the introduction of triplet atten-
tion, for capturing cross-dimensional interaction in SED models.
Further, we show the contribution of each additional method dis-
cussed in Section 3.5 to apply on the proposed developed system to
achieve the final PSDS1 of 0.483 and PSDS2 of 0.728 on the valida-
tion set, giving a 34.1% increase compared to the baseline in terms
of both PSDS metrics.

4.2. Ablation study on triplet attention branches

With the use of a three-branch structure, we verify that it is impor-
tant to capture the cross-dimensional interaction between (T, F), (T,
C), and (C, F). In Table 3, we compare the results when each branch
is turned on, represented by the combination given in each row, to
analyze the influence of the branches in the triplet attention mod-
ule. As can be seen, the findings corroborate our understanding that
individual and pair branch interaction is inferior to the performance
of triplet attention, which involves all three branches being active.

4.3. System comparison

To further assess the efficacy of the proposed module, the system is
also compared with the top-ranked single (without ensemble) sys-
tems submitted to DCASE 2022 Task 4. In Table 4, the scores for

Table 3: Ablation study to show the gain of each branch in the triplet
attention on DCASE 2022 Task 4 validation set, where (x,y) is the
interplay between dimensions x and y to compute attention weights
and aggregated average.

Branch Interaction PSDS1 PSDS2 #Parameters

(F,T) 0.420 0.643 304k

(C,T) 0.410 0.614 304k

(C,F) 0.424 0.657 304k

((F,T), (C,T)) 0.480 0.723 304k

((F,T), (C,F)) 0.468 0.716 304k

((C,T), (C,F)) 0.459 0.730 304k

((F,T), (C,T), (C,F)) 0.483 0.728 304k

Table 4: Comparison with top-ranked single systems (without en-
semble) from DCASE Task 4 2022 on the validation set.

System PSDS1 PSDS2 #Parameters

Ebbers-UPB-task4 [25] 0.505 0.807 15.4M

Proposed 0.483 0.728 304k
Zhang-UCAS-task4 [26] 0.459 0.672 11M

Kim-GIST-task4 [27] 0.455 0.670 1M

Dinkel-XiaoRice-task4 [28] 0.425 0.644 37M

the other systems are directly taken from their cited technical re-
ports released in the challenge. The proposed low-complexity sys-
tem surpasses systems with large parameters and gets close to the
top-ranked system, which has 15.4M parameters while having just
304k parameters. We also note that the proposed attention module
is network-independent and can be employed in any model to re-
place standard convolutions with the IRTAM block. Furthermore,
on the public evaluation set, the final system with the proposed IR-
TAM achieved a PSDS1 of 0.488 and a PSDS2 of 0.720, in contrast
to the baseline system having a PSDS1 of 0.387 and a PSDS2 of
0.592.

5. CONCLUSION

In this work, we proposed an inverted residual network with triplet
attention as a module referred to as IRTAM to replace the stan-
dard 2D convolutional neural networks for SED applications. The
proposed low-complexity attention module was designed to capture
cross-dimensional interaction with minimal computational over-
head. To show the effectiveness of the developed lightweight archi-
tecture employing IRTAM, we considered the DCASE 2022 Task
4 dataset for the studies. Our findings demonstrated the efficacy
of incorporating cross-dimensional interaction in SED applications
by improving the baseline by 34.1% and significantly outperform-
ing some other attention modules in both aspects of the PSDS met-
ric. Furthermore, our ablation study validated the relevance of cap-
turing cross-dimensional interaction using a three-branch structure
and showed overall effectiveness by achieving comparable results to
systems with a large number of parameters. It is also worth noting
that the proposed system contains only 27.6% of the baseline pa-
rameters, making the model suitable for low-complexity SED appli-
cations. We intend to extend the proposed IRTAM to larger model
sizes in the future.
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