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ABSTRACT
The learning of sound events often depends on data that is man-
ually labeled by human annotators. In this study, we explore the
use of soft labels for sound event detection (SED), which takes into
account the uncertainty and variability in human annotations. To
address the challenges posed by uncertain or noisy labels, we pro-
pose a weighted soft label (WSL) loss function. This loss function
effectively emphasizes reliable annotations while mitigating the in-
fluence of less confident or noisy labels. Additionally, we introduce
auxiliary tasks into a multi-task learning (MTL) framework, which
helps to leverage the shared information between the tasks and im-
proves the overall performance of the model. Furthermore, we ex-
plore the usage of pretrained models and various front-end feature
extraction methods. Experimental results on the MAESTRO-Real
dataset introduced in the DCASE 2023 Task 4B demonstrate a sig-
nificant improvement of 14.9% in the macro-average F1 score with
optimum threshold per class compared to the challenge baseline
model on the validation set, highlighting the effectiveness of our
proposed system.

Index Terms— sound event detection, soft labels, multi-task
learning, acoustic scenes, weighted loss

1. INTRODUCTION

The primary aim of sound event detection (SED) is to autonomously
identify and extract significant information from audio recordings,
enabling the detection of specific events or activities. SED holds
immense potential to augment diverse domains, leading to enhanced
safety, convenience, and efficiency. It already plays a critical role in
a wide range of applications, including surveillance systems [1, 2],
acoustic monitoring [3], smart-homes [4–6], and human-computer
interaction.

The lack of labeled training data presents a notable challenge
in SED. The process of collecting and annotating extensive audio
datasets with labeled sound events is time-consuming and demand-
ing. The scarcity of annotated data impedes the training of accurate
models and limits their performance. As a result, researchers are ex-
ploring alternative techniques such as employing soft-labeling train-
ing methods and transfer learning to mitigate this issue. Soft labels
provide a representation of the degree of presence or confidence for
specific sound events in each audio segment or frame, in contrast to
hard labels that assign binary labels (e.g., 0 or 1). By incorporating
confidence scores, soft labels effectively capture the uncertainty and
variability associated with sound events, facilitating more nuanced
analysis and decision-making processes.

In addition to soft-label generation, researchers are also investi-
gating transfer learning as a means to enhance SED. Transfer learn-
ing enables the utilization of knowledge acquired from pretrained

models on different but related tasks. Instead of training a model
from scratch on a specific SED task, transfer learning allows the
model to benefit from the learned representations and features of
a pretrained model. Previous works have shown the effectiveness
of using the features from pretrained models like pretrained audio
neural networks (PANNs) [7–9], audio spectrogram transformers
(ASTs) [10], and bidirectional encoder representation from audio
transformers (BEATs) [11], trained on a large dataset. The models
are fine-tuned using their learned features, customized to the spe-
cific SED task at hand, leading to improved performance.

Sound events occurring in nature are typically intricately linked
with acoustic scenes. An acoustic scene encompasses the auditory
environment in which sound events occur, reflecting the distinc-
tive combination of various sound sources, background noise, and
spatial characteristics. Understanding and analyzing sound events
within their corresponding acoustic scenes play a pivotal role in
SED and related applications. For instance, in the acoustic scene
“cafe” the sound events “coffee machine” and “cutlery and dishes”
are likely to occur, whereas the sound events “bird singing” and
“wind blowing” occur infrequently. On the basis of these previous
methods, [12] has proposed methods of SED that take into account
acoustic scene information in an unsupervised manner. [13,14] have
proposed scene classification methods considering sound events us-
ing Bayesian generative models. Similarly, the methods proposed
in [15, 16] focus on the joint analysis of acoustic scenes and sound
events using neural network models based on multi-task learning
(MTL). Such MTL-based methods leverage the existing knowledge
and reduce the need for manual labeling, thus effectively addressing
the challenge of data scarcity.

The detection and classification of acoustic scenes and events
(DCASE) 2023 edition has recently introduced a new subtask,
4B [17], which aims to explore the potential benefits of incorporat-
ing soft labels in improving performance. In our study, we extend
the idea of integrating soft labels into the training procedure of SED
models. Our investigation specifically revolves around the utiliza-
tion of soft labels using this newly released dataset in the DCASE
2023 Task 4B dataset [18]. This dataset was specifically designed
for exploring the estimation of strong labels through crowdsourc-
ing. It consists of 49 real-life audio files captured from 5 distinct
acoustic scenes, accompanied by their corresponding annotation
outcomes. To effectively leverage the soft-level probabilities pro-
vided in the dataset, we propose a novel weighted soft label (WSL)
loss function that mitigates the impact of less confident or noisy la-
bels. Moreover, we delve into the integration of two auxiliary tasks
within an MTL framework to enhance the effectiveness of the SED
model. To further improve the model’s capabilities, we also explore
the utilization of pretrained models and different front-end methods
for feature extraction.
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Table 1: Categorization of acoustic events into different acoustic scenes for the MAESTRO-Real dataset.
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Cafe/Restaurant ✓ ✓ ✓ ✓ ✓ ✓

City center ✓ ✓ ✓ ✓ ✓ ✓

Grocery store ✓ ✓ ✓ ✓ ✓ ✓

Metro station ✓ ✓ ✓ ✓ ✓ ✓

Residential area ✓ ✓ ✓ ✓ ✓ ✓

Acoustic scene

Acoustic event

2. PROPOSED METHODS

2.1. Multi-task learning (MTL) framework

Conventionally, acoustic scenes and sound events have been treated
as separate entities in most methods. However, in reality, acoustic
scenes play a crucial role in shaping the perception and interpreta-
tion of sound events by providing a contextual backdrop. Recog-
nizing the significance of this relationship, we aim to leverage it to
gain valuable insights that can enhance SED methods. In this study,
we leverage the five acoustic scenes available in the DCASE 2023
Task 4B dataset, and provide a summary of the sound events that
take place in these acoustic scenes, as shown in Table 1.

From the table, it is evident that certain sound events, such as
“shopping cart” occur exclusively in a specific acoustic scene and
are not present in any other acoustic scene. Similarly, the sound
event “bird singing” is only observed in residential areas and not in
any other acoustic scene. Additionally, we notice that some events,
like “footsteps” and “children voices” are common across multiple
acoustic scenes. As a result, we propose an additional task of clas-
sifying the acoustic environment associated with a sound event as
either indoor (I) or outdoor (O). This classification helps to differ-
entiate the surroundings in such sound events. We present two addi-
tional tasks related to acoustic scenes: (1) categorizing the acoustic
scene for each frame where a sound event takes place, termed acous-
tic scene classification (ASC), and (2) determining whether each
frame’s sound event occurs indoors or outdoors, known as acoustic
environment classification (AEC). As depicted in Table 2 the acous-
tic scenes associated with the sound events are separated into five
different classes. Additionally, we determined whether the acoustic
scenes were indoors (I) or outdoors (O) based on their respective
environments. To enhance the performance of the SED model, we
integrate the information from these two auxiliary tasks into the pri-
mary SED branch.
Table 2: Classification of the 5 acoustic scenes into different scene
labels and environment labels.

Acoustic scene Scene label Environment Environment label
Cafe/Restaurant A indoor I
City center B outdoor O
Grocery store C indoor I
Metro station D indoor I
Residential area E outdoor O

In order to capture low-level features that can benefit all three
tasks, we design the network to share certain common layers. These
shared layers facilitate the extraction of features that are relevant to
all tasks. Previous studies in [19] have demonstrated that leveraging
knowledge from easier tasks can improve the performance of harder
tasks. In our case, we consider SED as the most challenging task,
followed by ASC, and finally AEC. Therefore, we anticipate that
the two auxiliary tasks will contribute to improving the SED perfor-
mance. To conduct the joint training with these two tasks, we use a
combined loss function LMTL, which is the weighted loss function.
It can be expressed mathematically as

LMTL = α× LSED + β × LASC + γ × LAEC (1)

where α, β, and γ are the trade-off factors that regulate the weighted
loss. By adopting an MTL framework with joint training, we benefit
from the fact that once the MTL-based model is trained, the auxil-
iary branches can be removed from the model architecture. During
inference, only the single SED branch is utilized, ensuring that the
number of parameters remains the same as that of a single SED
branch.

2.2. Weighted soft label (WSL) loss

The DCASE 2023 Task 4B baseline uses mean-square error (MSE)
loss, to teach the system to predict outputs as close as possible to
the provided soft activity indicators instead of binary as described
below:

MSE =
1

N

N∑
i=1

C∑
j=1

(yij − pij)
2 (2)

where N represents the total number of samples, C is the number
of classes, yij is the ground truth soft label for sample i and class j,
and pij is the predicted value for sample i and class j. We extend
this loss function to incorporate weights derived from the proba-
bilities assigned to the soft labels by the annotator. Our proposed
weighted soft label (WSL) loss function assigns varying importance
to each prediction based on its associated probability, as described
below:

WSL =
1

N

N∑
i=1

C∑
j=1

yij · (yij − pij)
2 (3)

where yij also acts as the weight assigned to the soft label for sam-
ple i and class j. Higher weight is given to predictions with higher
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probabilities, indicating a higher level of confidence in those pre-
dictions. This weighted approach allows the model to focus more
on accurately predicting instances with higher probabilities while
considering the uncertainty associated with softer labels. As a re-
sult, the model can learn to optimize its performance by prioritizing
predictions based on their probability-weighted importance, leading
to improved accuracy and robustness.

3. ARCHITECTURE

3.1. Baseline

The baseline system [17] for DCASE 2023 Task 4B adopts the con-
volutional recurrent neural network (CRNN) architecture with a lin-
ear output layer. The convolutional neural network (CNN) compo-
nent of the model consists of three layers, each featuring 128 fil-
ters. A kernel size of 3 × 3 is applied to each convolutional layer,
followed by the activation function rectified linear unit and batch
normalization [20]. Frequency and temporal pooling are performed
using a max pooling layer with sizes of [[1, 5], [1, 2], [1, 2]], re-
spectively. To mitigate overfitting, a dropout rate of 0.2 is applied
after each layer. This is followed by the recurrent neural network
(RNN) block, consisting of a single layer of 32 bidirectional gated
recurrent units (Bi-GRUs) [21].

3.2. Proposed architecture

In this study, we incorporate large-scale PANNs [7] into our ap-
proach due to resource limitations. The PANNs have been pre-
trained on the extensive Audioset dataset, which consists of 5000
hours of audio spanning 527 sound classes. By leveraging the pre-
existing knowledge encoded in these pretrained models, we aim to
replace the CNN component of the baseline model with PANNs,
thereby benefiting from their learned representations and features.
The PANNs architecture comprises 6 convolutional blocks, with
each block consisting of 2 convolutional layers using a 3× 3 kernel
size. In our study, we investigate the extraction of embeddings after
each convolutional block within the PANNs model. These embed-
dings are subsequently inputted into a single-layer Bi-GRU contain-
ing 256 hidden units. The complete CRNN model, encompassing

Feature Extraction

Input Audio Signal

PANNs

Embeddings

GRU GRU GRU

LSED LASC LAEC

CNN

RNN

Figure 1: The proposed MTL framework with PANNs along with
three parallel Bi-GRUs for different tasks.

both the PANNs and Bi-GRU components, is unfrozen and trained
throughout the experimentation process. Additionally, to include
the two supplementary tasks outlined in Section 2.1, we uphold
the CNN component as the shared element across all tasks. Fur-
thermore, we integrate distinct Bi-GRUs and output layers for each
distinct task, as depicted in Figure 1, each sized at (200 × 17),
(200 × 5), and (200 × 2) for the SED, ASC, and AEC branches,
respectively.

4. EXPERIMENTAL SETUP

4.1. Dataset

This study utilizes the multi-annotator estimated strong
(MAESTRO)-Real dataset [18] released for the DCASE 2023
Task 4B. The dataset comprises 49 real-life audio files captured
from 5 distinct acoustic scenes and includes corresponding an-
notation outcomes. The total duration of the dataset amounts to
189 minutes and 52 seconds. The audio files are a subset of the
TUT Acoustic Scenes 2016 dataset and encompass five acoustic
scenes: cafe/restaurant, city center, grocery store, metro station,
and residential area. Each scene consists of 6 classes, with some
classes being common across all scenes, resulting in a total of
17 classes as presented in Table 1. The dataset consists of the
following components: (1) audio recordings comprising the 49
real-life recordings, each ranging from 3 to 5 minutes in length,
and (2) soft labels representing estimated strong labels with a time
resolution of 1s obtained through crowdsourced data, with values
ranging between 0 and 1 indicating the certainty of the annotators.
The soft labels follow a format that includes the start time, end
time, textual label, and a corresponding value indicating the soft
label for each event class within the given segment. For example:
“2 3 car 0.9”, “2 3 footsteps 0.7”, and so on.

4.2. Feature extraction and training

For the baseline system [17], a batch size of 32 is employed, and the
input features are mel-band energies extracted using a hop length of
200 ms and 64 mel filter banks. Additionally, we explored differ-
ent front-end feature extraction techniques such as mel-frequency
cepstral coefficient (MFCC), linear frequency cepstral coefficient
(LFCC), and constant-Q transform (CQT) to replace the log-mel
spectrogram. The DCASE 2023 Task 4B dataset is organized ac-
cording to a 5-fold cross-validation setup, where around 70% of the
data per class is allocated for training, and the remaining portion is
dedicated to testing. To optimize the training process, we employ
the Adam [22] optimizer, with an initial learning rate of 0.001. The
training process is executed over a total of 150 epochs, utilizing the
computational power of the Nvidia RTX A4000.

4.3. Evaluation

In this study, we utilize the macro-average segment-F1 score
(F1MO) under the optimum threshold [23] as our primary evalu-
ation metric. It is calculated over 1s segments, following the same
approach as the DCASE 2023 Task 4B challenge. The F1MO score
considers the best F1 score per class achieved with a class-specific
threshold. Additionally, we report the micro-average F1 score
(F1m), micro-average error rate (ERm), and macro-average F1
score (F1M ) calculated over 1s segments using a decision threshold
of 0.5 applied to the system output.
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5. EXPERIMENTAL RESULTS

In this part, we present outcomes of the proposed methods, includ-
ing ablation studies on the DCASE 2023 Task 4B validation set.

5.1. Architecture with feature extraction

We first present the outcome in Table 3 obtained for the baseline as
reported by the organizers of the DCASE 2023 Task 4B. The base-
line incorporates the log-mel spectrogram with the configuration
specified in Section 4.2. Subsequently, we substitute the baseline
architecture with the proposed architecture described in Section 3.2,
which utilizes PANNs. When using PANNs, we extract the embed-
dings after the 6th block. Our observations show that employing
PANNs with log-mel spectrogram alone enhances the F1MO score
from 42.8 to 45.4 as represented in Table 3. The following analysis
compares various commonly employed feature extraction methods
discussed in Section 4.2. Our findings reveal that the MFCC-based
feature extraction method outperforms the log-mel spectrogram uti-
lized in the baseline, as well as the LFCC and CQT front-ends. It
improves the F1MO score for the 6-blocks-based PANNs to 46.5
from 45.4. Having determined MFCC as the chosen feature ex-
traction method, we proceed to explore the layer from which we
extract the embeddings. We decrease it from the 6th Block to the 3rd

Block and conduct experiments accordingly. Through this analysis,
we discover that extracting embeddings after the 4th Block yields
the most significant improvement in the F1MO score, increasing it
from 46.5 to 48.2.

5.2. WSL loss function

Once we determine that the highest score is achieved by extracting
embeddings after the 4th Block, we introduce the WSL loss func-
tion, as outlined in Section 5.2. The loss function prioritizes the
learning of well-defined patterns while minimizing the influence
of ambiguous or noisy instances. Consequently, this enhancement
leads to an improvement in the F1MO score, increasing it from 48.2
to 48.9.

5.3. MTL framework

To enhance our system, we introduce the MTL framework compris-
ing two auxiliary branches in addition to the primary SED branch.
In an ablation study, we compare the performance of the proposed
system (PANNs+WSL) by incorporating different MTL branches.
Initially, we integrate only the ASC branch with the SED branch

Table 3: Comparison of performance, showing the impact of archi-
tectural changes and variations in feature extraction methods.

System Blocks Feature ERm F1m F1M F1MO

Baseline - Log-mel 0.487 70.34 35.83 42.8

PANNs 6 Blocks Log-mel 0.442 72.64 36.97 45.4

PANNs 6 Blocks CQT 0.493 67.53 31.84 42.0

PANNs 6 Blocks LFCC 0.447 71.5 31.75 46.0

PANNs 6 Blocks MFCC 0.415 74.18 34.33 46.5
PANNs 5 Blocks MFCC 0.410 75.1 37.21 48.0

PANNs 4 Blocks MFCC 0.408 76.74 39.42 48.2
PANNs 3 Blocks MFCC 0.470 73.5 39.35 46.2

Table 4: Illustration of performance improvement following the im-
plementation of the WSL loss function.

System Feature ERm F1m F1M F1MO

Baseline Log-mel 0.487 70.34 35.83 42.8

PANNs (4 Blocks) + WSL MFCC 0.416 75.61 38.60 48.9

Table 5: Ablation study for analyzing the contribution of each
branch.

System MTL ERm F1m F1M F1MO

Baseline - 0.487 70.34 35.83 42.8

PANNs (4 Blocks) + WSL SED + ASC 0.416 76.33 39.65 49.2

PANNs (4 Blocks) + WSL SED + AEC 0.412 76.29 40.85 49.0

PANNs (4 Blocks) + WSL SED + ASC + AEC 0.406 76.61 39.87 49.3

with (α=0.85, β=0.15, and γ=0). After tuning the weights in the
loss function, this configuration achieves the highest F1MO score
of 49.2. Next, we replace the ASC branch with the AEC branch
(α=0.85, β=0, and γ=0.15), which results in a F1MO score of 49.0.
Finally, we introduce all three branches, including the SED, ASC,
and AEC branches, with tuned hyperparameters (α=0.85, β=0.1,
and γ=0.05). This configuration yields the best overall score of
49.3, demonstrating the effectiveness of the MTL framework and
the impact of each auxiliary branch.

5.4. System comparison

Our experiments come to a close as we present the results of
comparing our system with other high-performing submissions for
DCASE 2023 Task 4B. Table 6 displays the reported performances
of the baseline system as well as other systems, sorted based on the
F1MO score. We observe that our system achieves a performance
comparable to other systems while demonstrating an improvement
of 14.9% over the baseline system. Additionally, it is worth not-
ing that our system outperforms the 3rd system [24] in all metrics
besides the F1MO score.

Table 6: Performance comparison of our proposed system with
other submissions in DCASE 2023 Task 4B.

System ERm F1m F1M F1MO

Xu-SJTU-task4b-3 [25] 0.246 86.13 57.91 69.85

Bai-JLESS-task4b-4 [26] 0.360 78.63 42.45 56.16

Liu-SRCN-task4b-2 [24] 0.430 72.90 28.80 49.70

PANNs (4 Blocks) + WSL + MTL (Ours) 0.406 76.61 39.87 49.30
Nhan-VNUHCMUS-task4b-1 [27] 0.450 72.43 37.32 46.71

Min-KAIST-task4b-1 [28] 0.445 72.78 36.12 45.81

Cai-NCUT-task4b-1 [29] 0.439 74.84 39.57 43.50

Baseline [17] 0.487 70.34 35.83 42.8

6. CONCLUSION

In this study, we present our methods for sound event detection
using soft labels introduced in DCASE 2023 Task 4B. We pro-
pose several novel approaches and demonstrate their effectiveness
through our findings. Firstly, we suggest using PANNs embeddings
and modifying the feature extraction process. Secondly, we propose
a weighted soft label (WSL) loss function. Lastly, we incorporate an
MTL framework with auxiliary branches for ASC and AEC tasks,
enhancing the performance of the primary SED task through joint
training. In the future, we intend to explore making task weights
adaptive rather than relying on hyperparameter tuning.
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