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ABSTRACT

Optical fiber sensing is a technology in which sounds, vibra-
tions, and temperature are detected using an optical fiber; especially
the sounds/vibrations-aware sensing is called distributed acoustic
sensing (DAS). DAS has the potential to capture various types of
sounds and/or vibrations in wide areas, e.g., the ground, the sea,
and a city area, in our everyday life. To precisely recognize the var-
ious types of events, e.g., whale calls, car horns, and wind, by DAS,
therefore two problems. First, there is little publicly available data
and few pretrained models for the various types of events. Second,
the signal-to-noise ratio (SNR) of DAS data is lower than that of
other sensor data, such as microphone data, because of optical noise
and low sensitivity of DAS. To tackle the lack of DAS data, we first
demonstrate a DAS simulation method where DAS observations are
simulated by exploiting a microphone simulation. We then propose
a method of event classification for DAS utilizing a pretrained au-
dio recognition model, where none of the DAS data are used for
training. Moreover, we advocate a class-level gated unit with the
pretrained model to overcome the poor classification performance
caused by the low SNR of the DAS data. In the proposed method,
class probabilities, which are the output of the pretrained model,
are employed for controlling priors of DAS, such as events of in-
terest or optical noise. Directly controlling the class probabilities,
which are non-black-box values, as priors enables us to utilize not
only a pretrained model but also powerful human knowledge. To
verify the performance of the proposed method, we conduct event
classification, where we simulate observed signals by DAS with the
ESC-50 dataset. Experimental results show that the accuracy of the
proposed method is improved by 36.75 percentage points compared
with that of conventional methods.

Index Terms— Optical fiber sensing, distributed acoustic sens-
ing, deep neural network, sound event classification

1. INTRODUCTION

Optical fiber sensing is the detection of sounds and/or vibrations
using an optical fiber [1, 2], which is known as distributed acoustic
sensing (DAS) or phase-sensitive optical time domain reflectom-
etry (ϕ-OTDR). Optical fiber sensing, including DAS, is superior
to other methods in terms of the scalability of the sensing area,
the electromagnetic resistance, and the usability of existing optical
fibers. Because of these features, DAS is widely used for various
applications, especially detecting vibrations, such as whale call de-
tection [3], structural health monitoring [4], seismic activity moni-
toring [5], border monitoring [6], and pole localization [7]. Owen et
al. [6] introduced the DAS-based system for distinguishing people,
vehicles, and flying objects. Waagaard et al. [8] proposed large-
scale sensing over 171 km using DAS. Ip et al. [1, 2] discussed the
use of telecom cables for sensing sounds and/or vibrations.
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Figure 1: Overview of DAS system

Recently, deep neural networks (DNNs) have been in the spot-
light in the field of DAS [7, 9, 10, 11]. DNN-based methods require
a large amount of training data to achieve the high performance
of DAS. To alleviate this limitation, Zhao et al. [10] proposed a
data augmentation of DAS and its application to seismic data. Gen-
erative adversarial network (GAN)-based methods [11] have been
studied to produce training data and are designed for seismic appli-
cations.

DAS has two problems in the precise recognition of various
types of events, such as whale calls, dog barking, and footsteps.
First, there is little publicly available data and few pretrained mod-
els for analyzing various types of event classes in the field of
DAS. On the other hand, in communities where acoustic signal
processing and statistical methods have been studied for various
types of sounds [12], various types of dataset or pretrained model
[13, 14, 15] are available. Second, the signal-to-noise ratio (SNR) is
lower in DAS compared with methods using other sensors, such as
microphones. The lower SNR of DAS is caused mainly by optical
noise and the low sensitivity of DAS.

To address the lack of DAS data, we first demonstrate a DAS
simulation method where a simulator of microphones is utilized for
simulating DAS observations. We then propose an event classifi-
cation method of DAS using a pretrained audio recognition model
trained by microphone data. Moreover, we introduce a class-level
gated unit with the pretrained model to tackle the problem of the
low SNR of DAS data. In the proposed method, posteriors of the
pretrained model are employed to control prior information, i.e.,
events of interest or optical noise, which can be directly manipu-
lated by humans in the inference stage. The proposed gated unit
that directly controls the probabilities of event classes, which are
non-black-box values, enables us to utilize not only the pretrained
model but also human knowledge.



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

Optical fiber

Gauge length
Channel

DAS

Microphone array

Microphone

Figure 2: Comparison of DAS and microphone

2. DISTRIBUTED ACOUSTIC SENSING

2.1. Principle of DAS

In DAS, a sensor captures the phase change of a Rayleigh backscat-
tering light wave. Figure 1 shows an overview of the DAS system.
The backscattering is triggered by a coherent laser that collides with
impurities in the optical fiber. The phase change of the backscatter-
ing is proportional to the optical fiber stretching [16], that is, sounds
or vibrations that propagate through the optical fiber.

In DAS, the stretching of the optical fiber is measured over the
gauge length (GL) L. The total phase change ∆ϕ in L [17] is

∆ϕ =

∫ L
2

−L
2

ϵ(x) dx, (1)

where ϵ(x) indicates the strain, that is, the observed sounds and/or
vibrations along the optical fiber, at position x of the optical fiber.
The point is that the observed signals depend on L. In general,
larger L suppresses optical noise, although it distorts the observed
signal of sounds or vibrations. An optical fiber sensor with GL of
L is also interpreted as a linear sensor array in Eq. 1 where the
directivity of the angle of a source signal and its distortion [18].
As can be seen in Fig. 1, arbitrary multiple sensing points can be
set along the optical fiber in accordance with a predefined spatial
sampling rate.

2.2. Difference between DAS and acoustical microphones

There are two main differences between DAS and microphones: op-
tical noise and GL. The differences make the SNR of DAS data
lower compared with that of microphone data. In the first differ-
ence, optical noise [19, 20], shot noise [2] is dominant because of
the randomness of photons. The second difference is the idea of the
gauge. A larger GL distorts signals observed by DAS. On the other
hand, a smaller GL, i.e., limL→0 ∆ϕ, approximates a point sensor
such as a microphone. As can be seen in Fig. 2, DAS data within
the GL is thus regarded as a microphone array where channels are
densely distributed. Note that the effects of the GL are evident in a
single channel of DAS data, unlike a microphone array.

3. PROPOSED METHOD

In this section, we first introduce a simulation method of DAS ob-
servation to address the lack of DAS evaluation data for analyzing
various types of events. Second, the event classification method for
DAS utilizing the pretrained audio recognition model and the class-
level gated unit are proposed.
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Figure 3: Overview of proposed method

3.1. DAS simulation utilizing microphone simulation

To simulate DAS, we employ multiple simulated microphones, i.e.,
a microphone array. This is because the sound propagation and the
GL are easily implemented using tools of a microphone array sim-
ulation, e.g., pyroomacoustics [21] where distance attenuation, re-
verberation, or directivity is easily simulated. We simply take an
average of signals observed by microphones of M channels.

s̃m′ =
1

M

M−1∑
m=0

sm. (2)

Here, s̃m′ ∈ RT indicates a DAS signal of the m′-th channel with
T temporal frames. sm ∈ RT denotes a signal captured by a mi-
crophone m of the array. The average of the multiple channels cor-
responds to L in Eq. 1. s̃m′ is distorted by the GL, i.e., no-delay-
and-sum operation. As an example referring to Fig. 2, there is a
single channel data value of DAS for each observed data of three
microphones (M = 3).

The signal detected by DAS is reportedly expressed as [22]

x = s̃m′ + n, (3)

where n ∈ RT represents the noise signal. x ∈ RT is the noisy
signal that is corrupted by the GL and the noise signal. When n is
the shot noise of optical noise, it follows the Gaussian distribution
N (µ, σ).

3.2. Event classification of DAS with pretrained audio recogni-
tion model and class-level gated unit

To precisely classify various types of events under a lower SNR
condition of DAS data, we propose the event classification method
of DAS with the class-level gated unit utilizing the pretrained audio
recognition model.
[Training stage] In the proposed method, only the data and pre-
trained model trained with the microphone data are used for the
training to tackle the lack of DAS data. Figure 3 shows an overview
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Figure 4: (a) Coordinates of simulation and (b), (c) results of preliminary experiments

of the proposed method. Given a pretrained audio recognition
model of the microphone, its deep feature extractor Emb : RT →
RD and the classification layer CL : RD → [0, 1]E are defined.
The posterior for event classes is then

P = CL
(
Emb(A)

)
|A=s, (4)

where T , D, and E represent the temporal length of an audio clip,
the number of dimensions of embedding, and the number of event
classes of the pretrained model, respectively. A denotes an arbitrary
signal. When the model is trained with the microphone data, sm |
∃m is used as A. Given two fully connected layers (FCs) FC1 :

RD → RE and FC2 : RE → RE′
, the class-level gated unit is

Z = FC2

(
FC1

(
Emb(B)

)
⊙ P

)
|B=s . (5)

⊙ and E′ indicate elementwise multiplication and the number of
target event classes of DAS, respectively. B denotes an arbitrary
signal. Equation 5 is similar to that of a gated linear unit (GLU)
[23]. In our method, gating is conducted on the probabilities of
event classes of the pretrained audio recognition model, which are
non-black-box values.
[Inference stage] In inference stages, DAS data x are used as A
and B in Eqs. 4 and 5, respectively. P can then be edited by human
interaction. Directly controlling the interpretable values, i.e., the
probabilities of event classes, enables us to utilize human knowl-
edge as an additional prior. Human knowledge can enhance the
classification performance with low SNR of DAS data since humans
have rich knowledge compared with pretrained audio recognition
models. For example, values of event classes of P unrelated to a
recording situation and/or events of interest can be directly masked
with zero or a small value:

P = (p0, . . . , pe, . . . , pE−1), (6)

where pe ∈ [0, 1] is the value of event e of the predefined event
classes for the pretrained model and can be directly set by a human.
Secondarily, A |A=n in Eq. 4 can be used for mitigating the optical

noise in the level of the class of the pretrained model in the inference
stages:

P = max
(
FC1

(
Emb(B)

)
−CL

(
Emb(A)

)
, 0

)
| B=x, A=n, (7)

where max(a, b) is a function that returns the larger value element
of vectors a and b in an elementwise manner. 0 represents the
E dimensional vector where all elements are zero. In Eq. 7, only
denoised probabilities of event classes are expected to be passed
through. In the inference stages, the softmax function is applied to
Z for obtaining the maximum value of the posteriors of the event
classes.

4. EXPERIMENT

4.1. Experimental conditions

[Simulation procedure] To simulate DAS observations, we fol-
lowed the procedure described in Sec. 3.1. We first simulated a
linear microphone array and a sound source, as shown in Fig. 4a,
using the pyroomacoustics toolbox [21]. By using pyroomacous-
tics, we can easily simulate the sound propagation and the idea of
the GL. The microphone array consists of 250 channels at intervals
of 1 cm. The observed signals of the channels are then averaged
using Eq. 2. M was set to 40 (L =40cm) or 250 (L =250cm)
in our experiment. Here, the center of the gauge with M = 40
matches those with M = 250. We finally obtained single channel
data of DAS from the signals observed by M microphones using
Eqs. 2 and 3. The signal of the sound source was omnidirectionally
propagated. In our experiments, we did not simulate any reverbera-
tions or revetments of the optical fiber. Moreover, for the shot noise
of optical noise, we use Gaussian noise ∼ N (0, 1) with variable
SNRs.

[Dataset, classification model, and acoustic feature] We used the
ESC-50 dataset [13] to evaluate the performance of our methods.
ESC-50 comprises 4,000 5-second audio clips with 50 event classes.
For the classification model, we used pretrained CNN14 in PANNs
[15]. PANNs were trained using AudioSet [14] where event classes
are organized in a hierarchy, i.e., ontology. In our experiment, Emb
and CL are those of CNN14 with the frozen parameters, where
D and E are set to 2,048 and 527, respectively. E′ is set to 50,
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Figure 5: Accuracy (%) of event classification for each target major
category with directly controlling gate

which is the number of classes in ESC-50. All clips are downsam-
pled to 32kHz in our experiment. As acoustic features, we used
64-dimensional log-mel energies calculated for every 1,024 sample
window and 320 sample hop sizes.

[Training and evaluation] We conducted the 5-fold cross-
validation with the ESC-50 dataset. In all experiments, we trained
the models using (M /2)th-channel signals of the microphone array
before all of the channels were averaged. Note that the (M /2)th
channel is located at the center of the microphone array. This is be-
cause we aim to reproduce the situation of the lack of DAS data. In
the inference stages, we used only the DAS simulation data, which
were averaged with Eqs. 2 and 3. In the training stages, the param-
eters of only FC1 and FC2 were updated by backpropagation using
Adam [24]. In all FCs, except for FC2, ReLU activation was used.

4.2. Experimental results

[Comparison between DAS and microphone data] We first con-
firm the amplitude spectrum of a chirp signal in the DAS and micro-
phone simulations. Figure 4b shows the 50-to-10,000Hz spectrum.
As shown in the figure, GL=40cm does not considerably distort the
signal compared with GL=250cm. Furthermore, in Fig. 4c, the
embedding vectors of DAS and microphone data obtained by Emb
of PANNs [15] are visualized by t-SNE [25]. As can be seen in
the figure, there is little difference between the distributions of the
microphone and DAS data of GL=40cm. Even when GL is set to
250cm, most of the embeddings of DAS are overlapped with those
of the microphone. The results prove that microphone data are sim-
ilar to DAS data except for optical noise, obtained using large-scale
pretrained audio recognition models.
[Event classification with controlling gate] In this experiment,
we directly control P to evaluate the performance of targeting an
event of interest. To conduct this experiment, we utilize the overlap
between the major categories of ESC-50 and the ontology of Au-
dioSet. In the major categories of ESC-50, we focus on “Animal,”
“Natural,” and “Human,” which correspond to “Animal,” “Natural
sounds,” and “Human sounds” of the AudioSet ontology. When
events in a major category of ESC-50 are targeted, pe in Eq. 6 is
set to 1; otherwise, 0. For example, when event classes of the major
category “Human” of ESC-50 are targeted, pe in Eq. 6 correspond-
ing to “Human sounds” of the AudioSet ontology is set to 1; oth-
erwise, 0. Figure 5 indicates the results of event classification with

Table 1: Accuracy (%) of event classification with denoising optical
noise

SNR [dB]
-5 0 5

GL [cm]
40 250 40 250 40 250

Conv. 18.90 15.65 39.00 32.00 59.00 48.45
w/ spectral 23.60 24.25 54.65 37.45 69.65 39.50subtract. [26]
w/ Wiener 21.35 16.65 34.15 23.90 47.35 32.20filter [27]

Prop. 32.45 27.55 51.95 40.05 64.50 51.50w/ Eq. 7

Eq. 6 in terms of each major category. “Conv.” indicates CNN14
[15] fine-tuned with ESC-50 of microphone data, where the last two
FCs were trained, as described in [15]. “Prop.” represents the pro-
posed method with directly controlled P . The results show that the
proposed method outperformed the conventional method in terms of
classification accuracy. In particular, our method improved the ac-
curacy of “Human” by 36.75 percentage points compared with that
of the conventional method under the condition of SNR= −5dB
and GL = 40cm. On the other hand, the “Natural” class is mis-
classified when using the proposed method under some conditions.
This is because the “Natural” class, e.g., wind or rain, possibly co-
occurs with other classes. In other words, the proposed method with
Eq. 6 might discard the information of co-occurrence among event
classes.
[Event classification with denoising] In this experiment, we evalu-
ated the denoising performance for event classification of DAS data
with optical noise signals. Note that none of the DAS data were
used for training models to simulate the lack of DAS data. We thus
employed non-machine-learning-based denoising methods for the
comparison. “Prop.” represents the proposed method where P was
produced by Eq. 7 with the optical noise n. Table 1 shows the
results of event classification with denoising optical noise. The re-
sults reveal that the classification performance is improved when
using the proposed method compared with the conventional meth-
ods. In particular, the more degraded signals, i.e., lower SNR and/or
larger GL, receive greater benefits from the proposed method with
Eq. 7. This is because the proposed method does not further distort
the signals distorted by the GL, unlike the conventional methods.
Moreover, the proposed denoising method can utilize the statistical
information of the pretrained model, unlike the conventional meth-
ods.

5. CONCLUSION

In this paper, we proposed the event classification of DAS data uti-
lizing the pretrained audio recognition model with the class-level
gated unit for accurately classifying various types of events under
low SNR conditions without DAS training data. In the proposed
method, the class-level outputs of the pretrained model, which are
non-black-box values, are employed for controlling priors of DAS
data, that is, the optical noise and/or events of interest. This enables
us to exploit not only the statistical information of the pretrained
model but also human knowledge. To evaluate the performance
of the proposed method, we conducted event classification where
signals observed by DAS were simulated with the ESC-50 dataset.
Experimental results show that the accuracy of event classification
by the proposed method is improved by 36.75 percentage points
compared with that of the conventional methods.
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