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ABSTRACT

This paper defines the new problem of “audio-change captioning,”
which describes what has changed between two audio samples.
Conventional audio-captioning methods cannot be used to explain
such change, and conventional image-change-captioning methods
cannot explain the differences in audio samples. To address these
issues, we propose a neural-network model for generating sen-
tences that explain how a machine’s normal and anomalous sounds
changed in relation to each other. We also created a dataset called
MIMII-Change by annotating pairs of normal and anomalous sam-
ples extracted from MIMII-DG for each type of sound in machine-
operation sounds. The experimental results indicate that our model
with spatial attention architecture is effective for stationary sounds
because it is able to determine changes in global features, while our
model with Transformer Encoder architecture is effective for peri-
odic and sudden sounds because it is able to determine temporal
dependencies.

Index Terms— Automated audio captioning, Natural language
generation, Deep learning

1. INTRODUCTION

Automated audio captioning (AAC) [1] is one of the tasks that has
received particular attention in the field of environmental sound
analysis (ESA). The purpose of AAC is to automatically generate
textual descriptions (captions) of an audio signal. By represent-
ing an audio signal with captions, the relationship between acoustic
events and acoustic scenes in the audio signal and their respective
states can be described. AAC is expected to have practical appli-
cations in a variety of areas, such as assisting the hearing-impaired
to understand environmental sounds and analyzing sound in video-
based security surveillance systems. It can also be used for other
fields such as multimedia retrieval [2, 3]. The framework com-
monly used in AAC is the sequence-sequence encoder-decoder [4],
and like many natural-language-processing tasks, Transformer [5] is
the predominant model in AAC [6, 7, 8]. Several studies were con-
ducted to improve the performance of caption generation by provid-
ing additional information beyond the encoded audio-embedding
information to the text decoder [6, 9]. The utility of such semantic
guidance has been explored in image and video captioning, achiev-
ing better performance [10, 11].

While the purpose of AAC is to describe a single sound, in real-
world problem solving, it may be useful to compare two acoustic
signals and describe the changes between them. The anomalous
sound detection (ASD) [12] system for machine-operation sounds,
only informs about the presence of anomalies without specifying

what has changed and how. As a result, experts need to verify the
detection results and perform additional tasks to determine if repairs
are necessary and which components should be repaired. To sim-
plify this process and reduce the workload for experts, we propose
representing the differences between normal and anomalous sounds
using linguistic information. This approach allows for an efficient
analysis of anomalous machine operation sounds, enabling experts
to identify the specific changes and alleviate their burden.

Hence, we define the task of describing the change between two
audio signals as audio-change captioning, address the task of ex-
plaining anomalous sounds in machines, and introduce the task de-
scription and learning scheme. It should be noted that in this study,
the objective is not to classify anomalous sounds as in traditional
ASD, but rather to focus on expressing how they are anomalous.

Change captioning has already been studied in the image do-
main. It is used to describe what has changed between two image
scenes (before/after) using natural language. Jhamtani and Berg-
Kirkpatrick [13] used a pixel-difference-based approach to identify
regions of change between before and after images. Because im-
ages are assumed aligned and that there is always a change between
the two images, this approach cannot distinguish relevant changes
from distractors, which is data disguised as change such as view-
point changes. Therefore, to make it more useful for users, Park
et al. [14] created a model that distinguishes between distractors,
such as viewpoint change or lighting change, and semantically sig-
nificant changes such as object movement or change. The model
was made robust to distractors by using a dual-attention mechanism
to identify regions of change between images. Thus, while change
captioning has been studied in the image domain and various meth-
ods have been proposed, a pixel-difference-based approach, such
as Jhamtani and Berg-Kirkpatrick’s [13], is not considered effective
for the audio domain, which is time-series information. This study
is the first attempt at automated audio-change captioning.

We propose a neural-network model for generating change cap-
tions from two sounds. The aim is to generate a textual caption of
the changes between the audio files and that is as close as possi-
ble to the change caption given by a human for the same audio
file. As the suitable model architecture differs due to the sound-
occurrence interval or section, we divided sound types into three
categories in accordance with sound occurrence and used differ-
ent architectures for our model. We used Transformer Encoder,
which is effective in many AAC tasks, and spatial attention, which
is also considered effective [14], as model architectures. For sta-
tionary sound changes, we employed spatial attention, while for
periodic and non-periodic sounds, we employed Transformer En-
coder. In addition to the metrics used in Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) [15], i.e., BLEU [16],
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<sos> The sound of ... <eos>

Figure 1: Our proposed audio-change captioning model to explain machine-sound anomalies

METEOR [17], CIDEr [18], and SPIDEr [19], we used Sentence-
BERT [20, 21], which is used to evaluate sentence-meaning agree-
ment. Since no suitable dataset for audio-change captioning existed,
we created the malfunctioning industrial machine investigation and
inspection (MIMII)-Change dataset, which is based on the malfunc-
tioning industrial machine investigation and inspection for domain
generalization (MIMII-DG) [22] which was created for anomalous
sound detection (ASD) that contains both normal and anomalous
sounds of five types of machine-operation sounds (bearing, fan,
gearbox, slider, valve). MIMII-Change consists of pairs of normal
and anomalous sounds, and each pair is annotated with the changes
between these sounds.

2. TASK DESCRIPTION

We now introduce the proposed neural-network model for gener-
ating change captions from two sounds. Like many models for
explanatory-sentence-generation tasks, it uses a network architec-
ture that encodes variable-length inputs into a fixed-dimension vec-
tor and uses this representation to ”decode” them into the desired
output sentence. Thus, we propose to directly maximize the proba-
bility of a correct description given two sounds using the following
formulation:

θ∗ = argmax
θ

∑
(Abefore,Aafter,W )

logp(W |Abefore, Aafter; θ), (1)

where θ are the parameters of our model, Abefore is an audio before
changing, Aafter is an audio after changing, and W is its correct de-
scription. Sentences are generally generated autoregressively from
the left (i.e. first word) to the right (i.e. final word). That is, at time
step t, the decoder predicts the posterior probability on the vocabu-
lary given the encoded acoustic feature, the start token w0, and the
previously generated words w1 to wn−1. Thus, p(W |Abefore, Aafter)
can be formulated as

logp(W |Abefore, Aafter) =

N∑
n=0

logp(wn|Abefore, Aafter, w0, ..., wn−1), (2)

where N is the length of sentence. Note that θ has been removed
for convenience. The description-generation process ends when a
stop token is generated or the maximum number of generation steps
is reached.

3. PROPOSED MODEL

3.1. Training scheme

To analyze the content of a sound clip, it is important to obtain a
valid feature representation of the sound clip. We first extract the
spectrogram then obtain embedding vectors Xall ∈ R(T∗2)×D by
using the encoder. This procedure can be formulated as

Xbefore, Xafter = E(Abefore, Aafter), (3)

where (Abefore ∈ RT×F , Aafter ∈ RT×F ) are the log mel-
spectrograms of “before” and “after” sounds, Xbefore ∈ RT×D and
Xafter ∈ RT×D are embedding vectors extracted by encoders E , T
is the number of time frames, F is the number of mel bins, and D
is the dimension of the latent embedding.

We then subtract Xbefore from Xafter to capture semantic differ-
ences in the embedding space. The resulting vector Xdiff is concate-
nated with Xbefore. This procedure can be formulated as

Xdiff = Xafter −Xbefore (4)

Xall = [Xbefore : Xafter : Xdiff], (5)

where [:] indicates concatenation.
We used Transformer Encoder [5] and spatial attention [14, 23]

as the audio encoders. Spatial attention consists of a two-layer con-
volutional neural network (CNN) and creates spatial-attention maps
abefore, aafter ∈ RT×F a from Abefore, Aafter. Thus, spatial attention
can localize the change areas between Abefore and Aafter and is valid
for image-change captioning [14]. For more information on this
model architecture, see Park et al.’s study [14].

The decoder predicts the entire caption using Xall. The <bos>
and <eos> tokens are added before and after the original caption to
indicate the beginning and end of the sentence, respectively. The de-
coder operates in a step-by-step auto-regressive decoding scheme:
at the first time step, <bos> is sent to the decoder, then at each
time step n, the decoder takes the output word wn−1 of the last
time step and generates word wn as the input word in the next
time step until <eos>. Finally, the decoder generates a sentence
S = {w1, ..., wN}, where wn is a word and N is the number of
words in the sentence. The entire model is trained end-to-end by
cross entropy loss. We use a standard transformer [5] as a decoder,
which consists of multi-head self-attention on the caption sequence
and multi-head encoder-decoder attention on the extracted feature
sequence. An overview of our proposed model is given in 1
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3.2. Category division

Machine-operating sounds include a variety of sounds, such as reg-
ularly occurring and suddenly occurring sounds, and the suitable
model architecture differs depending on the type of sound. Regard-
ing changes in regularly occurring sounds, it is considered impor-
tant to determine the changes in the global characteristics between
the two sounds, whereas it is considered important to determine the
temporal dependencies between the two sounds for changes in sud-
denly occurring sounds. Therefore, as proposed method, we divided
the sound types into three categories in accordance with the inter-
val of sound occurrence and interval between sound occurrences,
and MIMII-Change was created so that a single pair of normal and
anomalous sounds had three captions (see Section 4 for more de-
tails).

4. MIMII-CHANGE DATASET

Since there is no appropriate dataset to study audio-change caption-
ing, we created MIMII-Change. All sounds are single channel, 10 s
in duration, and down-sampled to 16 kHz. We utilized a test dataset
from MIMII-DG, consisting of five types of machine sounds (each
type consisting of 300 normal sounds and 300 anomalous sounds),
and created pairs by assigning one anomalous sound to one normal
sound. This resulted in a total of 1,500 pairs (300 pairs × 5 machine
types).

Three annotators compared the normal and anomalous sounds
of each pair and annotated the changes. The annotators were
instructed to always use onomatopoeia when describing sound
changes. This is because onomatopoeia, which is a character se-
quence for phonetically imitating a sound, are effective for describ-
ing diverse environmental sound features [24, 25]. Onomatopoeia
can be used to describe detailed changes, such as changes in the
pitch of a machine’s operating sound. The annotator also created
three captions for a pair in accordance with the three categories of
“stationary sound changes,” “periodic sound changes” and “non-
periodic sound changes.” This is because it is difficult to express all
changes in a single sentence, and from a model-learning perspec-
tive, it is undesirable for sentences to be redundant. Each of the
three categories is defined as follows: “stationary sound”: a single
sound that occurs continuously for more than about 5 s, “periodic
sound”: a sound that repeats (including intervals) for more than 5
s, and “non-periodic sound”: a sound that occurs multiple times
but has no periodicity or appears and disappears suddenly. To im-
prove learning efficiency, annotators provided captions according to
templates. Templates mean that, for example, a change in pitch is
always described as, “The pitch of ... became higher/lower.”

The 1.500 pairs were divided into two 75 and 25% segments,
which we call development and evaluation, respectively. All words
in the captions must be included in the development split, and there
should be no words that are only included in the evaluation split.
This prevents the presence of unused words in training (i.e. words
that only appear in development) and unknown words in evaluation
(i.e. words that do not appear in development). We also split the
data so that the word-occurrence frequency in development is al-
ways greater than that in evaluation. The number of data items,
words, and onomatopoeia after splitting of each category are as
listed in Table 1.

Table 1: Number of words of each category

onomatopoeia/other words Total

stationary 146 / 68 214
periodic 756 / 107 863

non-periodic 1,155 / 105 1,260

Table 2: Experimental conditions

Optimizer Adam [26]
Training epoch 100
Batch size 16
GPU GeForce RTX 3060

5. EXPERIMENTS

5.1. Evaluation metrics

To evaluate audio-change captioning, we used the conven-
tional rule-based evaluation metrics BLEU [16], METEOR [17],
CIDEr [18], SPICE [27], and SPIDEr [19]. Most conventional
rule-based metrics focus on n-gram or sub-sequence-based match-
ing between candidate and reference captions. CIDEr and SPICE,
proposed for image captioning, show better correlation with human
judgment in the captioning task. However, they cannot evaluate the
semantic similarity between sentences, and they have not yet been
able to resemble human evaluation [21]. To address this issue, we
used the model-based evaluation metric Sentence-BERT [20, 21].
Sentence-BERT can be used to obtain a fixed-length sentence-
embedding vector for input captions. The sentence embeddings are
then used to calculate similarities between candidate and reference
captions by calculating their cosine similarities. We also used the
phoneme error rate (PER) [28] to evaluate onomatopoeia correspon-
dence. Since each onomatopoeia is tokenized, it is not possible to
match onomatopoeia with similar constituent phonemes. For exam-
ple, “gagaga” and “gaga” would be evaluated as completely differ-
ent onomatopoeia. To address this issue, onomatopoeia were broken
down into phonemes according to a previous study [29], and sim-
ilarity was calculated between onomatopoeia in terms of the PER.
The PER is the “edit distance” between two phoneme sequences,
normalized by the length of target phonemes, and expressed us-
ing Eq. 6. Since the number of onomatopoeia appearing in dif-
ferent sentences may differ, we used the mean phoneme error rate
(MPER). The MPER is the average of PER of all combinations of
onomatopoeia in a sentence and expressed using Eq. 7, where N
is the number of phonemes in a reference caption, M is the num-
ber of phonemes in candidate caption, Rn is the n-th onomatopoeia
of a no reference caption, and Cm is the m-th onomatopoeia of a
candidate caption.

L(Rn, Cm) =

Repalcement Err. + Insertion Err. + Deletion Err.
Number of Target Phonemes

(6)

MPER =

N∑
n=1

M∑
m=1

L(Rn, Cm)

N ∗M (7)

Since the PER is calculated for all combinations of onomatopoeia,
it is not possible to evaluate onomatopoeia order correspondence,



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

Table 3: Experimental results

model type (#model parameters) BLEU 3 BLEU 4 METEOR CIDEr SPICE SPIDEr Sentence-BERT MPER

Stationary
TraEnc. (10.8M) 0.616 0.542 0.427 0.969 0.340 0.655 0.793 0.281
SpaAttn. (0.9M) 0.669 0.601 0.441 1.086 0.365 0.726 0.796 0.266
PANNs+TraEnc. (82.6M) 0.659 0.583 0.436 0.933 0.381 0.657 0.791 0.251

Periodic
TraEnc. (10.8M) 0.464 0.387 0.390 0.946 0.255 0.601 0.725 0.338
SpaAttn. (0.9M) 0.426 0.354 0.402 0.881 0.249 0.565 0.727 0.380
PANNs+TraEnc. (82.6M) 0.383 0.306 0.369 0.729 0.213 0.471 0.689 0.362

Non-periodic
TraEnc. (10.8M) 0.413 0.339 0.427 1.864 0.373 1.118 0.728 0.327
SpaAttn. (0.9M) 0.328 0.269 0.411 1.441 0.304 0.873 0.678 0.321
PANNs+TraEnc. (82.6M) 0.346 0.284 0.392 1.434 0.331 0.882 0.682 0.365

so the MPER is used only as a metric to measure onomatopoeia
agreement in sentences. For example, the PER value of the can-
didate sentence “A changed to B” and the candidate sentence “B
changed to A” would be the same with respect to the reference cap-
tion “Changed from A to B.” Here, A and B are onomatopoeia.

5.2. Experimental setup

We used the 64-dimensional log mel-band energy as an acoustic
feature, which is extracted on the basis of a 64-ms frame length with
a 32-ms shift size. Other conditions are listed in Table 2. As this
paper presents the first methodology for audio-change captioning,
there are no previous results to compare the presented ones. For
that reason, several model architectures are compared to investigate
their effectiveness.
Transformer Encoder Transformer encoders can determine the
temporal dependencies of each input sequence. Therefore, it is con-
sidered effective for periodic and non-periodic sound with short
sound onset intervals. In this experiment, Transformer Encoder
with three layers and four multi-head attention was used.
Spatial attention Spatial attention [23] is an architecture based on
convolutional neural networks and it generates a spatial-attention
map by using the inter-spatial relationship of features. Spatial at-
tention differs from channel attention in that it focuses on where in-
formation is located and has been shown to be effective in locating
points of change [14]. In this experiment, spatial attention consist-
ing of a two-layer CNN was used. The spatial attention architecture
is able to determine global features, which may be effective for sta-
tionary sound.
Acoustic feature extraction with pretrained audio neural net-
works (PANNs) The effectiveness of transfer learning of pre-
trained models has been shown in many audio-related tasks. To con-
firm the effectiveness of pre-trained models, we used PANNs [30],
a pre-trained model for acoustic recognition, as a feature extractor.
Specifically, we used a pre-trained 14-layer CNN (CNN14). Acous-
tic features are extracted from the spectrogram by using PANNs, the
outputs Xbefore and Xafter is subtracted, and Xall, calculated in the
same manner as Eq. 5, is passed through an encoder.

5.3. Results

Table 3 lists the evaluation results for each version in each of the
three categories. All versions used Transformer Decoder as decoder

and had different encoders. TraEnc. denotes Transformer Encoder,
SpaAttn. denotes spatial attention.
Transformer Encoder vs. spatial attention As shown in Table 3,
Spatial attention performed best for “stationary sound changes.”
As shown in Table 1, the number of words for “stationary sound
changes” was 214, which is much smaller than the other categories.
For steady sound changes, it is considered important to capture the
change in the global features between two sounds. Therefore, spa-
tial attention, which has a relatively easy task difficulty and con-
sists of a two-layer CNN, was more effective. Transformer Encoder
was more effective for “periodic sound changes” and “non-periodic
sound changes” because the vocabulary was large and it is consid-
ered important to capture the temporal dependency between the two
sounds.
Validity of PANNs as feature extractor In all three categories,
there was no performance improvement due to feature extraction
with PANNs. This may be due to the fact that PANNs is trained
by solving audio tagging, so features are lost in MIMII-Change in
which all sounds are classified as machine-operation sounds.

Our experiments showed that different model architectures
were suitable for different categories of sounds with distinct charac-
teristics. Specifically, we found that using spatial attention was ef-
fective for the “stationary sound changes,” while using Transformer
Encoder was effective for the “periodic sound changes” and “non-
periodic sound changes.”

6. CONCLUSION

We defined a new problem, “audio-change captioning,” which de-
scribes what has changed between two audio samples and proposed
a neural-network model for generating sentences that explain how
a machine’s normal and anomalous sounds changed in relation to
each other. We also created the MIMII-Change dataset that is
based on MIMII-DG, annotated each type of sound, and investi-
gated the characteristics of audio-change captioning. Our experi-
ments showed that different categories of sounds with distinct char-
acteristics required different model architectures for optimal perfor-
mance. By utilizing models tailored to each category of sound, we
were able to achieve high accuracy by leveraging the specific fea-
tures of the sound.
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