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ABSTRACT
Sound Event Localization and Detection (SELD) is a task that in-
volves detecting different types of sound events along with their
temporal and spatial information, specifically, detecting the classes
of events and estimating their corresponding direction of arrivals at
each frame. In practice, real-world sound scenes might be com-
plex as they may contain multiple overlapping events. For instance,
in DCASE challenges task 3, each clip may involve simultaneous
occurrences of up to five events. To handle multiple overlapping
sound events, current methods prefer multiple output branches to
estimate each event, which increases the size of the models. There-
fore, current methods are often difficult to be deployed on the edge
of sensor networks. In this paper, we propose a method called Prob-
abilistic Localization and Detection of Independent Sound Events
with Transformers (PLDISET), which estimates numerous events
by using one output branch. The method has three stages. First, we
introduce the track generation module to obtain various tracks from
extracted features. Then, these tracks are fed into two transform-
ers for sound event detection (SED) and localization, respectively.
Finally, one output system, including a linear Gaussian system and
regression network, is used to estimate each track. We give the eval-
uation results of our model on DCASE 2023 Task 3 development
dataset.

Index Terms— Sound Event Localization and Detection,
Transformer, Linear Gaussian System

1. INTRODUCTION

Currently, applications in various fields, such as robotics and
surveillance, rely on Sound Event Localization and Detection
(SELD) technology. Therefore, conducting in-depth research on
this topic is crucial. Since 2019, DCASE has been hosting relevant
challenges that have significantly improved SELD systems [1, 2].

The first notable method in SELD is SELDNet [3]. However, it
is limited in dealing with multiple overlapping events from the same
class with different locations. To address this issue, EINv2 intro-
duced a new track-wise output format [4]. Since then, Permutation-
Invariant Training (PIT) has been utilized in SELD [5], which forms
part of the baseline system used in DCASE 2023 Task 3. However,
EINv2 still requires multiple output branches to estimate the corre-
sponding track, which increases the model’s size. Especially if the
number of overlapping events is higher than the number of output
branches, EINv2 cannot predict all events simultaneously. In other
words, some events might be ignored.

Figure 1: The new output branch for SELD. PS, LGS, and
FCN denote parameter-sharing, linear Gaussian systems, and fully-
connected networks, respectively.

Building upon previous work, this paper presents a novel three-
stage solution for SELD. First, in contrast to EINv2, we generate
different tracks from the extracted features prior to the attention
module. Second, we employ a transformer instead of a simple con-
volutional recurrent neural network (CRNN) in SELD. Third, we in-
troduce a linear Gaussian system to predict the Direction of Arrival
(DOA) from each track rather than relying on regression networks.
It is worth noting that in EINv2, the number of output branches is
double the number of tracks, as each track requires separate output
networks for DOA and SED predictions, respectively. If the number
of tracks is large, this can pose challenges for EINv2, whereas our
proposed model handles this efficiently.

In the following Section 2, we review the related work which
we used in our proposed method. Section 3 introduces the pro-
posed method in detail. Section 4 showcases the experimental re-
sults along with their corresponding analysis. The last section con-
cludes our contribution and future work.

2. RELATED WORKS

2.1. Trackwise output format

This format type is first introduced in [4]. It can be defined as:

Y Trackwise = {(ySED, yDOA|(ySED ∈ 1M×K
S , yDOA ∈ RM×3)} (1)

where ySED and yDOA are predictions for SED and DOA, respec-
tively, 1 denotes one-hot encoding, M is the number of tracks, K
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is the number of classes, S is the set of sound event classes, and
R

M×3 represents spatial information by Cartesian coordinates.
However, this format type can lead to a track permutation prob-

lem. In most cases, M ≪ K indicates that not all classes of sound
events happen in each frame. In other words, events are not con-
sistently predicted in fixed tracks. As a result, in the training pro-
cess, tracks do not know which ground truths are corresponded to
themselves correctly. To address this issue, permutation-invariant
training is employed as a solution.

2.2. Permutation-Invariant training

Permutation-invariant Training was first introduced for speaker sep-
aration in [5]. Let t denote the frame index. Given a frame-level
permutation set P(t), which consists of all possible prediction-label
pairs, ground truth labels are assigned based on the possible com-
binations within this set of pairs. The lowest loss is then used for
backpropagation. The PIT loss can be defined as follows:

LPIT = min
α∈P(t)

∑
M

{ℓSED
α (t) + ℓDOA

α (t)} (2)

where α is one of the possible prediction-label pair, ℓSED
α (t) and

ℓDOA
α (t) are SED and DOA loss, respectively.

2.3. Linear-Gaussian system

The linear Gaussian system represents a linear relationship between
variables, where the observed variables are corrupted by Gaussian
noise. This modeling approach has been widely utilized in various
tasks, including detection or tracking tasks. A simple linear Gaus-
sian system can be described by the following equation:

y = Hx+ ω (3)

where y represents the observed state, x represents the latent state
(which is hidden), H is the observation matrix, and ω represents
the observation noise. A more complex version of the linear Gaus-
sian system can refer to the Bayesian filters, involving parameter
optimization, such as Kalman Filter [6].

3. THE PROPOSED METHOD

In this section, we will discuss the proposed method in detail.
Firstly, we introduce parameter-sharing (PS) technology to enable
multi-task learning. Then, we discuss the network in three stages:
Feature Extraction, Transformer, and Tracks Estimation. At last, we
will give a summary of the proposed method’s structure.

3.1. Parameter-Sharing

Due to SELD involving both sound event detection and correspond-
ing localization, this task is considered a complex multi-task rather
than a single task. Therefore, joint SELD learning can benefit from
multi-task learning (MTL) [7]. Considering that SED and DOA
predictions have different noise patterns, a good representation F
can average the noise patterns from both sides. Additionally, cer-
tain features R in F may be easily obtained from one side (SED or
DOA) but difficult from the other side. MTL can aid in obtaining a
good representation F .

Parameter-sharing (PS) is a classical MTL method, including
soft PS and hard PS [8]. The comparison between soft PS, hard PS,

and no PS can be seen in [4]. Thanks to their work, in this paper,
we select soft PS directly. The cross-stitch is used for soft PS. Let
Dc, Dt, and Df denote the dimensions of feature maps, time steps,
and frequency, respectively. The learnable parameters are denoted
as δi,j ∈ R

Dc . From the original feature maps (xSED, xDOA), the
new feature map updated by cross-stitch is given as:

[x̂SED, x̂DOA]T = ∆[(xSED, xDOA)]T (4)

where x̂SED, x̂DOA ∈ R
Dc×Dt×Df is the new feature map, ∆ is a

matrix with the dimension of 2× 2 consisting the learnable param-
eters, and T means transpose operation.

3.2. Feature Extraction

The first stage, Feature Extraction, includes a CNN-based feature
extractor, the track, and the observation noise generation module.
The primary objective of this stage is to obtain feature embedding
and observation noise.

SELDnet introduces a three-layer CNN-based feature extractor,
but its simple structure is considered less sensitive to small-sized
features. Moreover, SELDnet didn’t provide extractors for SED
and DOA branches separately. As a result, it might ignore some
specific features R in F , as discussed earlier. Therefore, this sim-
ple extractor is not ideal for joint SELD learning. We adopted the
extractor from EINv2 [4] directly. Same we provide different in-
puts for SED and DOA extractors. Only the DOA extractor will be
applied observation noise generation module.

Afterward, we generate M tracks from feature embeddings,
where M is a fixed input value. Therefore, we design a fully-
connected network (FCN) to implement. First, two embeddings are
flattened. Then, a linear layer is designed to increase the dimension
M times. Last, we reshape the embedding and obtain M tracks.
Also, the cross-stitch method is applied to the FCN.

Considering that the linear Gaussian system (LGS) is only ap-
plied to the direction of arrival (DOA) branch, we solely adopt the
observation noise module for the DOA’s feature map. The obser-
vation noise module consists of a linear layer to convert the feature
map into the observation state noise dimension (2-D or 3-D, de-
pending on the requirements).

3.3. Transformer

The Transformer was first proposed in [9], and we adopted it for
handling temporal information. We design separate Transformers
for SED and DOA, similar to the previous stage. Considering Trans-
former requires input with positional information. Thus, we apply
a fixed absolute positional encoding on each track as follows:

Pt,2i = 0.1 sin (t/108i/Dc), Pt,2i+1 = 0.1 sin (t/108i/Dc),
(5)

where t represents the time step and i denotes the feature map index.
Then, the positional encoded features will be fed into the Trans-
former’s encoder. Each encoder layer contains 8 multi-head self-
attention structures, and the input embedding dim is 512. Between
each encoder layer, soft PS is applied to balance the gap between
SED and DOA’s representations. The entire Transformer consists
of two encoder layers.

3.4. Tracks Estimation

The last stage, Tracks Estimation, aims to estimate SED and DOA
in each track. In EINv2, each track has two FCNs to estimate SED
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and DOA. If there is more than one track, EINv2 needs to add more
FCNs to cover the additional tracks. For instance, if there are three
tracks, EINv2 will need 6 FCNs to cover all estimations. Differ-
ent from it, we design the re-useable estimation block to cover in-
puts from different tracks to estimate the SED and the DOA of each
track.

For SED estimation, we employ a regression method to obtain.
The transformer’s output is fed into FCN and activated by the sig-
moid function. As for the DOA estimation, we adopt the linear
Gaussian system (LGS) to calculate the posterior estimation. The
calculation process is as follows:

I = HEHT +No (6)

Here, I represents the innovation covariance matrix, H is the ob-
servation matrix as defined in Equation 3, E denotes the identity
matrix, and No is the output from the observation noise module.
The observation noise is obtained by passing the observation em-
beddings (with a dimension of 512) through a linear layer. This
projection maps the observation embeddings to the state embed-
ding, which has a dimension of 3. The posterior covariance matrix
Cp is then obtained as:

Cp = (E−1 + I)−1 (7)

where [·]−1 denotes the inverse operation. Next, the residual matrix
R is calculated as:

R = H(x−Bo) (8)

where x represents the state embedding transferred from observa-
tion embedding, and Bo is the bias in the observation model. Fi-
nally, the DOA estimation, also known as the posterior mean matrix,
is obtained as follows:

x̂DOA = CpE
−1 +R. (9)

3.5. PLDISET and loss function

In the previous section, we discussed Permutation Invariant Train-
ing (PIT) but did not provide detailed information about the loss
functions for sound event detection (SED) and direction of arrival
(DOA). In this subsection, we will explain the loss functions and
provide an overview of the PLDISET method.

We select Binary Cross Entropy (BCE) as the loss function for
the SED task, which is a classification task. It measures the cross-
entropy between the predictions and the labels for SED. For the
DOA task, the evaluation is based on the distance between the es-
timations and the ground truths. Since Cartesian coordinates are
introduced, we can use the mean squared error between two points
in Cartesian coordinates as the loss function for DOA.

To train the SELD model and optimize its performance in both
SED and DOA tasks, these loss functions are used. The overall loss
is computed by summing the individual losses for SED and DOA
with appropriate weights.

The overview of the PLDISET is depicted in Figure 2. For the
sound event detection (SED) task, we use log mel spectrogram as
the input feature. In the case of the direction of arrival (DOA) task,
both log mel spectrogram and intensity vector map are selected as
the input features.

4. EXPERIMENT AND EVALUATION

4.1. Dataset and data augmentation

The DCASE 2023 development dataset consists of multichannel
recordings of sound scenes captured in different rooms and envi-
ronments. The dataset includes temporal and spatial annotations
for prominent events belonging to a set of target classes. The to-
tal duration of the dataset is 7.5 hours. However, due to the lim-
ited size of the dataset, it is insufficient to train a competitive deep-
learning-based model. To overcome this limitation, we utilized the
simulation generator script provided by the DCASE 2022 challenge
to generate an additional 30 hours of recordings. The generated
dataset includes two versions: a noiseless version and a noisy ver-
sion.

4.2. Metrics

We use the DCASE challenge’s metrics to evaluate our method. The
evaluation metrics used in this challenge are based on true positives
(TP) and false positives (FP), taking into account not only correct
or wrong detections but also the proximity to a distance threshold
T ◦ (angular threshold in our case) from the reference. For this chal-
lenge, the threshold is set to T = 20◦. The details can be seen in
[10, 11, 12].

4.3. Hyper-Parameters

We apply the Fast Fourier Transform (FFT) on the recordings using
a 1024-point Hann window with a hop size of 600 points. To extract
the log-mel spectrogram from the FFT result, we select 256 mel
bands. Next, we segment the audio clips into chunks of a fixed
length of 4 seconds without overlapping. The intensity vector map
is obtained as well.

For model training, we utilize the AdamW optimizer for op-
timization. The initial learning rate is set to 0.0005 for the first
80 epochs and is then reduced to 0.00005 for the subsequent 10
epochs. During the finetuning of the model, the scheduler strategy
changes to use a learning rate of 0.0005 for the first 10 warm-up
epochs. Afterward, the learning rate is multiplied by 0.1 every 10
epochs. The weighted term for the Permutation Invariant Train-
ing (PIT) loss is selected as 0.5 for both the sound event detection
(SED) and direction of arrival (DOA) losses.

4.4. Baseline system

We evaluate our proposed method by comparing it to the baseline
system (SELDNet) provided by the DCASE challenge, which has
been widely used as a benchmark [3, 13, 14, 15]. The baseline
system extends the original SELDNet [3] by introducing multi-
head self-attention blocks, using the Multi-ACCDOA output for-
mat, and employing SALSA-lite features to handle multiple over-
lapping sound events. Furthermore, we add EINv2 for comparison
as well.

4.5. Evaluation

We compare the proposed method with the baseline and EINv2 in
three steps. First, we trained all three algorithms on the noiseless
dataset using respective default settings. Table 1 shows their perfor-
mances. On the SED task, PLDISET and EINv2 achieved similar
performance and much better than the baseline. As for the DOA
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Figure 2: Network Architecture of the PLDISET.

task, PLDISET is slightly lower than the baseline, with a minor
gap.

Table 1: Official metrics on the noiseless generated dataset

Methods ER20 F20 LECD LRCD

baseline 0.52 49.2 18.8 58.9
EINv2 0.36 55.7 11.3 79.8

PLDISET 0.35 56.1 19.1 58.1

Afterward, we finetuned the models from the first step on the
noisy datasets. The evaluation results on the test dataset are pro-
vided in Table 2. EINv2 performed best on both tasks. The pro-
posed method achieved similar results on the SED task and was not
far from the baseline on the DOA task.

Table 2: Official metrics on the noisy generated datasets

Methods ER20 F20 LECD LRCD

baseline 0.55 48.9 20.0 49.9
EINv2 0.38 52.5 13.1 75.2

PLDISET 0.38 52.1 21.5 47.1

In the last step, we evaluated those methods on the development
dataset of the DCASE Challenge 2023. We finetuned models from
previous steps on the training part. Table 3 demonstrates the results
on the evaluation set. The proposed method and EINv2 outperform
well on the SED task with an error rate of around 0.39. The perfor-
mance of PLDISET on the DOA task is close to the baseline.

Table 3: Official metrics on the DCASE development dataset

Methods ER20 F20 LECD LRCD

baseline 0.57 48.7 22.0 47.7
EINv2 0.38 53.3 14.5 72.4

PLDISET 0.39 52.6 23.6 47.4

The proposed method shows its advantages on the SED task in
the three comparisons, with the lowest error rate of 0.35 and the
highest of 0.39. Considering that some datasets consist of real-
world recordings that are more challenging than the simulated data,
the proposed method shows its excellent capability in handling the

SED tasks under different complex scenarios. As for the DOA task,
unlike other works, we adopt a probabilistic method for localization
instead of a regression-based approach. However, the PLDISET
method shows a gap in the DOA task compared to EINv2 and the
baseline. The possible reason for the disadvantage is the LGS may
result in lower accuracy in the DOA estimations due to inaccurate
prior information or an inappropriate model.

Compared to other works, one of the distinguishing features of
PLDISET is its ability to estimate all tracks using a single output
branch. For most methods, they require assigning output modules
for each track. But PLDISET can reuse the output module for each
track. The experimental results demonstrate that PLDISET per-
forms well in SED tasks, showing its strong ability to accurately de-
tect and classify sound events without multiple regression networks.
Although the localization ability may not be as refined as in some
other works, it still achieves satisfactory results. Overall, PLDISET
balances sound event detection and localization tasks well. Con-
sidering that the parameters of the LGS can be updated and con-
strained by certain rules, there are potential research prospects in
further exploring and refining this aspect. By improving the prior
information and refining the model, it may be possible to enhance
the accuracy of DOA estimations in the PLDISET method. Besides
that, PLDISET shows its prospects of extending into a tracking ver-
sion. In tracking problems, different numbers of targets appear in
each frame which is quite common. Currently, PLDISET reuses the
single output branch to cover all tracks, which can be improved to
handle different tracks input. In addition, temporal information can
be considered in the tracking problem. Therefore, some historical
information, such as the Kalman Filter decreasing the error by re-
gression in the transaction, can be used to adjust the LGS to improve
tracking accuracy.

5. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel network called PLDISET for
SELD. We design the new output branch to estimate all tracks rather
than create several branches for each track. The proposed method is
evaluated on three datasets by comparing the baseline and EINv2 to
show its advantages and potential. The source code and improving
work based on the proposed method for sound event tracking will
be released in the future.
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