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ABSTRACT

Foley sound generation aims to synthesise the background sound
for multimedia content. Previous models usually employ a large
development set with labels as input (e.g., single numbers or one-
hot vector). In this work, we propose a diffusion model based sys-
tem for Foley sound generation with text conditions. To alleviate
the data scarcity issue, our model is initially pre-trained with large-
scale datasets and fine-tuned to this task via transfer learning us-
ing the contrastive language-audio pretraining (CLAP) technique.
We have observed that the feature embedding extracted by the text
encoder can significantly affect the performance of the generation
model. Hence, we introduce a trainable layer after the encoder to
improve the text embedding produced by the encoder. In addition,
we further refine the generated waveform by generating multiple
candidate audio clips simultaneously and selecting the best one,
which is determined in terms of the similarity score between the
embedding of the candidate clips and the embedding of the target
text label. Using the proposed method, our system ranks 1st among
the systems submitted to DCASE Challenge 2023 Task 7. The re-
sults of the ablation studies illustrate that the proposed techniques
significantly improve sound generation performance. The codes
for implementing the proposed system are available at https:
//github.com/yyua8222/Dcase2023_task7.

Index Terms— Sound generation, Diffusion model, Transfer
learning, Language model

1. INTRODUCTION

The development of deep learning models has recently achieved re-
markable breakthroughs in the field of sound generation [1, 2, 3, 4].
Among various application domains of sound, Foley sounds, the
mimic of background sound, play a crucial role in enhancing the
perceived acoustic properties of movies, music, videos and other
multimedia content [5]. The development of an automatic Foley
sound synthesis system holds immense potential in simplifying tra-
ditional sound generation, which often involves intensive labour
work on sound recording and mixing.

Currently, many sound generation models [1, 6, 7] adopt an
encoder-decoder architecture, showing remarkable performance.
Liu et al. [7] utilize a convolutional neural network (CNN) encoder,
a variational autoencoder (VAE) decoder and a generative adver-
sarial network (GAN) vocoder. The encoder embeds the input fea-
ture (e.g., label) into latent variables and the decoder transforms this
intermediate information into mel-spectrogram which is then con-
verted to a waveform by the vocoder. Diffsound [6] utilizes text as
input and obtains the semantic features by using a contrastive lan-
guage image pre-training (CLIP) model [8]. AudioGen [4] further
improves the performance by using a pre-trained Transfer Text-to-
Text Transformer (T5) [9] to obtain text embedding, which is then
used to generate the waveform directly without using a vocoder.
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Figure 1: The training process of the LDM model. Audio Embed-
ding are applied for pre-train the LDM on large dataset, while text
embedding and an extra tuning layer are applied for fine-tune the
LDM on target dataset

This paper proposes a latent diffusion model (LDM) based
method for Foley sound generation. Our model follows the structure
of AudioLDM [1], an audio generation model that comprises a dif-
fusion model based encoder, a VAE based module for learning au-
dio prior, and a HiFi-GAN vocoder for waveform generation. Due
to the lack of training data for the sound generation task, we follow
the idea of pre-training [10, 11], by initially training all three models
on large-scale datasets such as AudioSet [12], AudioCaps [13] and
Freesound1, and then transferring them onto the target development
set. For inputs, the category labels are initially wrapped into rele-
vant texts (e.g., turning the label “Keyboard” into text “Someone us-
ing keyboard”) before they are passed into the contrastive language-
audio pre-training (CLAP) [14] for generating the text embeddings.
To learn the most suitable semantic features of each sound, an em-
bedding tuning layer is then added to text embedding for finding the
optimal embedding during the fine-tuning stage. As shown in Fig-
ure 1, we first use audio embeddings to pre-train the LDM model.
Then a tuning layer is introduced into the system, which is updated
via transfer learning along with the LDM module. For outputs, the
cosine-similarity score obtained in terms of the outputs and target
labels is used to select the best-related sounds from a pool of candi-

1https://freesound.org
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Figure 2: The overview of the system for both fine-tune stage and inference stage

date sound clips, which can improve the overall quality of the final
result. Through experiments and ablation studies, we observe that
the proposed techniques in our system can significantly improve the
model performance in both the relevance of generated sound and the
stability of the overall quality. Our system achieves a Fréchet audio
distance (FAD) score of 4.52 on the DCASE task 7 validation set,
significantly better than the baseline model with a FAD of 9.7.

The remaining sections of this paper are organised as follows.
Section 2 describes the overview of the proposed system. The
methodology of the network is explained in Section 3. Section 4
introduces the experimental setup. Results are shown in Section 5.
Section 6 summarizes this work and draws the conclusion.

2. SYSTEM OVERVIEW

Our proposed system is based on the widely used structure on sound
generation, which consists of an encoder, a generator, a decoder and
a vocoder. The system adopts the same structure as AudioLDM [1],
which used the CLAP [14] as the encoder and a latent diffusion
model as the generator.

As a cascade model, the decoder and vocoder are trained sepa-
rately and then built into the overall system with the trained param-
eters frozen when training the LDM model based generator. Instead
of directly using labels as the input, we employ a wrapping strat-
egy to generate text descriptions for each label as the initial mecha-
nism to enhance the semantic information of the input. For example,
we turn the label “Keyboard” into text “Someone using keyboard”.
Then, we introduce an embedding tuning layer after the encoder in
order to produce a more suitable embedding for each sound.

During the generating stage, with the text input, the system ex-
tracts the text embedding using the CLAP model, and the LDM
model then generates the intermediate representation of the sound
feature, using the text embedding as a condition. Subsequently,
the mel-spectrogram can be decoded from the tokens by the VAE
decoder, which is then transformed into waveform by the GAN
vocoder. This system is then further improved with several tech-
niques:

• Transfer learning is introduced to boost the performance by
pre-training the model on larger datasets.

• A tuning layer is applied during the fine-tuning stage to find
the optimal embedding.

• Similarity score between the embedding of the generated out-

put and the target embedding is applied to select the best match
results among a group of waveform clips generated by the sys-
tem.

Detailed explanations of these methods are provided in following
section. The overall structure of the system is shown in Fig. 2.

3. PROPOSED METHOD

3.1. System structure

3.1.1. CLAP based encoder

We use the CLAP model to obtain the embedding of the input.
CLAP consists of a text encoder ftext that turns a text description
y into text embedding Ey and an audio encoder faudio that com-
putes an audio embedding Ex from audio samples x. The two en-
coders are trained with cross-entropy loss, resulting in an aligned
latent space with the same dimension De for both audio and text
embedding. Since most large audio datasets (e.g., AudioSet) only
provide audio-label pairs, we leverage the cross-modal information
provided by two encoders. Specifically, the system is pre-trained on
larger datasets with audio embedding and fine-tuned with text em-
bedding on the task development set. During the fine-tuning pro-
cess, the text embedding Ey is passed through a trainable linear
layer to find the optimal embedding feature for each class of sound.
Details of this mechanism are presented in Section 3.2

3.1.2. LDM based generator

Our system uses an LDM[15] to generate the intermediate latent
tokens, with the feature embedding (Ey or Ex) as the condition.
These tokens are then used by the VAE decoder to generate the mel-
spectrogram. During training, the LDM involves two processes: 1)
A forward process where the latent vector z0 is gradually turned
into a standard Gaussian distribution zN in N steps, with noise ϵ
added in each step. 2) A reverse process for the model to predict
the transition probabilities ϵθ of each step n, for reconstructing the
data z0 by removing the noise zN . The model is trained with a
re-weighted objective [16] as:

Ln(θ) = Ez0,ϵ,n||ϵ− ϵθ(zn, n,E)||22 (1)

where ϵθ is the Gaussian distribution predicted by LDM with cur-
rent state zn, current step n, and current condition E. During sam-
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pling, the model first generates random Gaussian noise as zN , and
then applies the denoising process by predicting the reverse transi-
tion probability and taking the E from CLAP as the condition.

3.1.3. VAE decoder & HiFi-GAN vocoder

We utilize a combination of a VAE decoder and a HiFi-GAN
vocoder to transform latent feature tokens into waveforms. Our ap-
proach involves training a VAE [17] to decode the latent feature
tokens into mel-spectrograms, and a HiFi-GAN [18] to generate
the corresponding waveforms. To achieve this, we initially convert
the waveforms into mel-spectrograms using the Short-Time Fourier
Transformation (STFT). The VAE is trained to compress the mel-
spectrograms, X , into a latent space vector z0, then reconstruct the
mel-spectrograms X̂ from the compressed representation. In par-
allel, we employ a HiFi-GAN to convert the mel-spectrograms X̂
into the corresponding waveform representations, denoted as x̂.

3.2. Practical issues

Transfer learning To deal with the issue of data scarcity, our sys-
tem takes advantage of a pre-trained model [10] by initially train-
ing all three models on extensive audio datasets, followed by fine-
tuning them on our development dataset. Specifically, the LDM
model undergoes its initial training phase using large-scale datasets
with audio embeddings as inputs, while the model is then trained on
the development dataset utilizing text embeddings.
Embedding tuning To first initialize the text embedding with more
semantic features, we apply some hand-picked text by extending the
label with some adjunct word (e.g., dogbark into a dog bark). We
then apply a tuning strategy to determine the optimal embedding of
each sound class. To implement this, we introduce a linear layer
L(x) with trainable parameters to fine-tune the text embedding be-
fore passing it to the LDM model. To guide this trainable layer with
only minor updates on the embedding, the parameters are initial-
ized with an identity matrix as weight, along with a Gaussian noise
as bias lb. Hence, the initial L(x) serves as an adding function of
input x and bias lb at the beginning of the training process. Then,
the system learns to update the parameter of both weight and bias
for optimal embedding during training. The embedding updated by
this linear layer is also used as the target embedding for the score-
selecting function discussed in the following section.
Score-based selection To improve the overall generation quality
and robustness, a scoring mechanism is applied to determine the
best matches among sampling results. Leveraging the fact that
CLAP provides embeddings in the same latent space for audio and
text, we utilize the cosine similarity between the output audio and
the target text. By comparing the FAD score of different groups
of output clips with different score-selecting thresholds, specific
thresholds are established for each class, allowing the system to
only selects the results surpassing these thresholds.

4. EXPERIMENTAL SETUP

4.1. Dataset

DCASE2023-T7 consists of a training set and an official evaluation
set with seven different classes of fully labelled urban sounds. Each
class has around 600 to 800 4-second sound clips in the training set
and exactly 100 clips in the evaluation set. We randomly partitioned
the training dataset into two subsets, with a ratio of 9 : 1 for training

and validation purposes, while the evaluation set was exclusively
used during the evaluation phase.
AudioSet is a large-scale dataset for audio research, which consists
a wide range of sounds. In detail, Audioset provides around 2.1
million 10-second audio with 527 classes of labels. Our system
uses AudioSet during the pre-training stage.
Freesound is a similar audio dataset with labels but with a non-
fixed length, ranging from one second to several minutes. To unify
the output length, all the sounds in Freesound are padded into a
10-second-long clip to match the data in Audioset.

By combining AudioSet and Freesound, we collected around
2.2M sounds in 22.05Khz for pre-training the LDM, VAE and GAN
models. By using the audio-embedding and mel-spectrogram as
input conditions, we only utilize the audio features to pre-train the
models, while label features are then used during fine-tuning stage
with the official training dataset.

4.2. Evaluation metrics

We apply the FAD [19] score as main evaluation metric. In detail,
FAD calculates the Fréchet distance F between a group of target
sound audio clip t and a group of generated sound audio clip r,
formed:

F = ||µr − µt||2 + tr(Σr +Σt − 2
√
ΣrΣt) (2)

where µ and Σ are the mean and covariance of Gaussian of the
embedding vector from each group extracted by VGGish [20].

4.3. Parameter setting

Both the decoder and vocoder are trained separately, then they are
integrated into the overall system with parameters fixed when train-
ing the LDM model. Initially, all three models are pre-trained using
AudioSet and Freesound from scratch and then fine-tuned with the
development set.

For the mel-spectrogram of 22.05kHz sounds, we set the win-
dow length as 1024 samples, the hop size as 256 and the number
of mel-filterbank as 80. The VAE is trained with a compression
level of 4, which encodes the mel-spectrogram into a latent vector
of 20 in the frequency dimension and 86 in the time dimension. The
length of the audio embedding Ex and text embedding Ey from the
CLAP encoder in Section 3.1 is 512. All the models are optimized
with Adam optimizer under an initial learning rate of 3.0 × 10−5,
with 3 epochs on the pre-training dataset and up to 1000 epochs
on the training set. We test the model (LDM-S) performance by
generating 100 clips per class and calculate the FAD score as the
evaluation metric for every 100, 000 step.

To investigate the influence of the input embedding features, we
employ a diverse set of labels and texts as embeddings for training
the model. In the case of embedding tuning, we begin by selecting
a specific set of text for providing the initial text embedding. Then,
we train the tuning layer along with the LDM model, guiding the
embedding towards the optimal value.

To further investigate the potential of the model on sound gen-
eration, we trained a larger LDM with a bigger CLAP model (LDM-
L) with the same training configurations. To balance the computing
complexity and the output quality, we trained this model on 16kHz
sounds and upsample it to 22.05kHz before output the results. For
the 16kHz mel-spectrogram, the hop size is decreased to 160 with a
mel-bin dimension of 64. The results of both models are shown in
the following section.
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System Dog Bark Footstep Gun Shot Keyboard Moving Motor Vehicle Rain Sneeze Cough
Baseline [7] 13.41 8.11 7.95 5.23 16.11 13.34 3.77

LDM-S 4.41 7.44 7.46 3.13 16.97 12.62 3.02
LDM-S+Pre 4.17 6.86 7.25 3.15 15.68 12.95 2.85

LDM-S+Pre+Text 3.84 5.66 6.66 3.48 14.35 12.62 2.12
LDM-S+Pre+Text+Filter 3.53 5.04 5.65 2.80 15.29 9.76 1.92

LDM-S+Pre+Text+Filter+Tuned 3.36 4.77 5.19 2.69 14.83 10.00 1.98
LDM-L+Pre+Text+Filter+Tuned 6.04 5.05 6.44 3.07 11.08 4.74 2.93

Table 1: The best results of each system on the DCASE2023-T7 evaluation set. LDM-S: model trained from scratch. Pre: model with
pre-training on large datasets. Text: using label-related text as input. Filter: applying the score-selecting function. Tuned: model with a
fine-tuned embedding. The score selection for motor sound is used with the text embedding of “ A moving motor ”.

5. RESULTS AND ANALYSIS

The performance of our system on DCASE2023-T7 validation set is
reported in Table 1. Most of our models outperform the baseline [7]
by a large margin in terms of FAD. The results obtained from dif-
ferent sizes of LDM highlight distinct strengths: LDM-S is better at
generating clear and distinct sounds like dog barks, footsteps, and
gunshots, whereas the larger model (LDM-L) demonstrates supe-
rior performance in handling complex sounds such as motor sounds
and rain sounds.

Ablation studies are also conducted to investigate the effects
of each proposed technique. The experimental results in Table 1
demonstrate that transfer learning generally improves the system
performance in most cases with respect to the evaluation metrics.
Applying the embedding tuning strategy enables the system to op-
timize the embedding value for each class, which further improves
the performance. To validate the effectiveness of this embedding
tuning mechanism, we conduct several experiments with models
trained with different frozen text embeddings. All the models are
sampled under the same configuration for up to 20 times and the
results of motor sound are presented in the box chart of Fig. ??. It
can be observed that training without embedding tuning may yield
results with varying quality, ranging from the best FAD of around
12.5 to the largest score of up to 18. On the contrary, generating a
well-trained embedding value can contribute to more stable results.
This might be because the updated embedding during training can
provide more semantic information for both LDM denoising and
the waveform tuning process.

Embedding Moving Motor Vehicle
Label 16.97
Motor 13.14

A moving motor 12.12
Sound of motor 12.87

Driving/motor/car 12.07
Tuned embedding 11.08
Audio embedding 8.88

Table 2: The best results on LDM-L with FAD on motor sounds be-
tween different score-selection. Embeddings indicate the text/label
value for training and similarity calculation.

From Table 1, the utilization of the similarity score function sig-
nificantly enhances the overall performance, leading to improved
output quality in most scenarios. However, despite the improve-
ments observed in the majority of classes, we noticed that the gen-
eration quality of motor sounds did not exhibit a significant decrease
in FAD (best achieved 11.08). By operating several subjective eval-
uations (human evaluation), we find out that this might be because

most motor sounds consist of noise-like sounds and sound events
with distinct differences (e.g., driving sounds and engine sounds),
making it challenging for CLAP to identify and extract a single em-
bedding that aligns perfectly with all the target clips. To address
this issue and improve the correlation of the score function, we
introduced a multi-target-selection approach to replace the single
embedding score-selection. Specifically, we collected a set of au-
dio embeddings that demonstrated top feature correlation with the
training dataset and randomly selected an audio embedding for the
score-selection during each iteration. As the result presents in Ta-
ble 2, our system with multiple audio-embedding filters achieves a
notable FAD score of 8.88 for motor sounds.

6. CONCLUSION

This paper proposes a framework for small-domain Foley sound
generation. Our system leverages a diffusion-based model and ap-
plied several methods to enhance performance. On the input fea-
ture, our experiment shows that the input embedding can signifi-
cantly affect the overall quality. To alleviate this distinct gap be-
tween label and sound alignment, we proposed a trainable embed-
ding for tuning the embedding value. Our result indicates that an
improved embedding can further improve the quality and stability
of the model. For output, a score-selection strategy is utilized to se-
lect the best clip along with CLAP score similarity. The experimen-
tal result shows that our system can significantly improve over the
baseline network by a large margin. In the future, we will explore
more efficient and end-to-end methods for audio feature extraction
and fine-tuning.
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