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ABSTRACT

Industrial anomaly detection (AD) plays a critical role in maintain-
ing the safety, efficiency and productivity of modern manufactur-
ing and production processes. Despite the widespread adoption of
IoT sensor boards in industry, there is still a lack of comprehensive
multi-sensor and multi-rate datasets for AD that adequately account
for domain shifts, i.e. variations in operational and environmental
conditions that significantly affect AD performance. To address this
gap, we present the Industrial Multi-sensor Anomaly Detection un-
der Domain Shift Conditions (IMAD-DS) dataset. The IMAD-DS
dataset comprises multi-sensor data from two scaled industrial ma-
chines: a robotic arm and a brushless motor, collected under differ-
ent operating conditions to mimic real-world domain shifts, includ-
ing speed and load changes. We also add different types of back-
ground noise to the audio data to simulate different environmental
domain shifts. Benchmark testing with an autoencoder model show
that AD performance decreases significantly with domain shifts,
emphasizing the value of IMAD-DS for the development of robust
multi-sensor AD systems.

Index Terms— Anomaly Detection, Sensor Fusion, Dataset,
Domain Shift

1. INTRODUCTION

As modern industry grows in complexity and scale, the role of
anomaly detection (AD) in machine monitoring and fault detection
has increased significantly. This brings several benefits, such as in-
creased safety, reduced impact on machine performance and higher
productivity. Traditionally, industrial AD has relied on the experi-
ence of on-site technicians. While effective, this method is labor-
intensive and often limited by the physical accessibility of some
machine components. Therefore, the shift towards automated, data-
driven methods such as machine learning and deep learning has
gained momentum [1]. In this context, AD is framed as the task of
automatically detecting abnormal conditions by learning only nor-
mal operating conditions.

A variety of physical variables such as vibration [2, 3, 4], tem-
perature [5], pressure [6], and audio [7, 8, 9] can be used to de-
tect anomalies in the industrial environment. However, with the
widespread adoption of IoT boards it is now possible to simultane-
ously collect data from numerous sensors, providing a more com-
prehensive multi-modal description of machine operation. This data
enables the development of more robust AD algorithms that take
advantage of this richer description. Thus, the presence of multi-
modal AD datasets becomes crucial for the development of the next
generation of data-driven industrial AD systems.

Nevertheless, most existing industrial AD datasets primarily fo-
cus on single-sensor data, with only a few datasets covering multi-
sensor scenarios. Notably, the Tennessee Eastman Process (TEP)
models an industrial chemical process using a model-based simu-
lator [10]. The HAI dataset captures data from a realistic indus-
trial control system augmented with a hardware-in-the-loop simu-
lator [11]. The CWRU Bearing dataset focuses on motor condition
assessment [12]. Additionally, the Skoltech Anomaly Benchmark
(SKAB) provides data from various machines captured using mul-
tiple sensors [13]. However, these datasets often overlook the in-
herent variability of real industrial environments that significantly
affect the performance of AD systems [14, 15, 16, 17]. These de-
viations are often referred to as domain shifts and represent natural
deviations in the distribution of normal data, which, however, make
the automatic detection of anomalies more difficult.

The importance of accounting for domain shifts has recently
been recognized in the field of audio-based anomaly detection,
thanks in part to the contributions of the DCASE Task2 challenge
and the availability of datasets that take this aspect into account,
such as TOYADMOS2 [15], MIMII DUE [16] and MIMII-DG [17].
Introducing domain shifts into a dataset enables the development of
more robust AD models and facilitates the development of domain
adaptation and generalization techniques [17].

Inspired by the growing interest for AD in the presence of
domain shifts, this paper introduces the Industrial Multi-sensor
Anomaly Detection under Domain Shift Conditions (IMAD-DS)
dataset. IMAD-DS comprises multi-sensor data from two scaled
representations of industrial machines, namely a robotic arm and a
brushless motor, collected under varying operational conditions to
mimic real-world domain shifts, which include variations in oper-
ating speeds and loads. We also add different types of background
noise to the audio signals to simulate different environmental do-
main shifts. Further, the dataset comprises sensors producing data
with different sampling frequency, increasing the complexity with
respect to single-rate multi-sensor datasets such as [10, 11, 13].

In addition to the dataset, we propose a deep learning model that
enables multi-modal and multi-rate anomaly detection (AD) under
domain shift conditions, serving as a benchmark to evaluate the
dataset’s usefulness. The model employs a fully connected autoen-
coder (AE) architecture that attempts to reconstruct multi-sensor
data, yielding a reconstruction error which serves as an anomaly
score metric for unsupervised AD. Results show that using multi-
ple sensors is helpful for the task of AD, and also that performance
decreases under domain shifts, underscoring the usefulness of the
IMAD-DS dataset. The dataset is freely available for download at
https://zenodo.org/records/12636236.
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Figure 1: Robotic arm in the anechoic chamber, without weights.
The IoT acquisition board is connected to the machine through the
plexiglass base.

Figure 2: Brushless motor in the anechoic chamber. The IoT acqui-
sition board is connected to the machine by screws that hold it on
the plastic base.

Machine Name Domain Shift Parameter Value for Source-Domain Value for Target-Domain
Robotic Arm Attached loads of increasing weight 00, 10, 15, 20 25, 30, 35

Factory background noise (SNR -4 dB) A, C, D, F B, E, G
Brushless Motor Different rotation speeds [rpms] 1500, 1600, 1700, 1800, 1900, 2000,

2400, 2800, 3000
1000, 1100, 1200, 1300,
1400

Factory background noise (SNR -4 dB) A, C, D, F B, E, G

Table 1: Domain shift configurations for the robotic arm and brushless motor in the IMAD-DS dataset. The table lists the different operational
and environmental conditions used to create source and target domains. Numbers from 00 to 35 are indexes of increasing weights. Letters A
to F index 7 background noise recordings from different real factories, all scaled to attain a SNR of -4 dB.

Robotic Arm Brushless Motor
Source Domain Target Domain Source Domain Target Domain

Normal Anomaly Normal Anomaly Normal Anomaly Normal Anomaly
Train 1812 0 27 0 1263 0 18 0
Test 116 116 116 116 78 78 78 78

Table 2: Number of samples for each class in source and target domains, further divided into normal and anomaly classes for the two machines.

2. DATASET OVERVIEW

The IMAD-DS dataset comprises multi-rate and multi-sensor data
from two scaled representations of industrial machines, namely a
robotic arm and a brushless motor. It contains both normal and
abnormal multi-sensor data, which are also recorded under differ-
ent operating conditions to account for domain shifts. The domain
shifts considered in this dataset are divided into operational domain
shifts, which are all the allowed machine working configurations,
and environmental domain shifts, which are caused by changes in
background noise. Anomalies are introduced by intentional disrup-
tions to the normal behavior of the machine in question. IMAD-DS
dataset consider the following machines.
Robotic Arm: The robotic arm is a scaled version of a robotic arm
used to move silicon wafers in a factory, reproducing actual fac-
tory movements. The machine and its recording setup are shown in
Fig. 1. Anomalies are created by loosening the screws at the arm’s
nodes, causing the typical spatial miscalibrations of such machines.
Brushless Motor: The brushless motor is a scaled representation
of an industrial brushless motor, as shown in Fig. 2. Two anomalies
are introduced: first, a magnet is moved closer to the motor load,

causing oscillations by interacting with two symmetrical magnets
on the load; second, a belt that rotates in unison with the motor
shaft is tightened, creating mechanical stress.

To introduce domain shifts, various operating and environmen-
tal conditions are considered for each machine type. The robotic
arm is recorded with seven different loads of increasing weight. In
contrast, the brushless motor is recorded using 14 different operat-
ing voltages leading to various speeds. Both machines are also sub-
jected to different background noises as environmental conditions.
Combinations of these operating and environmental conditions di-
vide each machine’s dataset into two subsets, namely the source
domain and the target domain. The source domain represents the
original environment where a large number of training examples are
available. In contrast, the target domain is characterized by a series
of domain shifts where the availability of training data is severely
limited and often restricted to few clips of target condition. The dis-
crepancy between the source and target domains reflects a common
problem in practice, where sufficient training data is often not avail-
able for the target domain. The domain shift configurations for both
datasets are shown in Tab. 1.

As the dataset is tailored for unsupervised anomaly detection,
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Sensor Type Sample Rate Part Number
Analog microphone 16 kHz IMP23ABSU

3-axis Accelerometer 6.7 KHz ISM330DHCX
3-axis Gyroscope 6.7 KHz ISM330DHCX

Table 3: Sensors embedded on the STWIN.box IoT board and used
for data acquisition.

this characteristic is also mirrored in the dataset’s composition. Un-
supervised AD systems exclusively use normal data for training,
since acquiring a comprehensive set of real-world anomalies is chal-
lenging. Anomalous samples are included only in the test set to
assess the system’s capability to detect unknown anomalies. The
composition of each machine dataset is detailed in Tab. 2.

3. RECORDING SETUP AND DATA PROCESSING

Multi-sensor data is collected using a STEVAL-STWINBX1 [18],
an IoT Sensor Industrial Node from STMicroelectronics. In both
machines, the sensor board and the machine lie on the same sur-
face, allowing us to jointly characterize the machine’s behavior in
terms of audio, vibration, and rotations. The MEMS sensors used to
capture these physical quantities are a microphone, an accelerome-
ter, and a gyroscope, respectively. The actual sensors embedded on
the sensor board and used to collect data are listed in Tab. 3 along
with their respective sampling frequencies.

All recordings are conducted in a completely anechoic cham-
ber, allowing precise control of the acoustic environment. This con-
figuration not only enables detailed acoustic simulations, but also
provides the flexibility to adjust the level of background noise to
achieve the desired signal-to-noise ratio (SNR) and thus adjust the
difficulty of the audio part of the AD task.

3.1. Processing of Audio Signals

The audio signals collected by the microphone are processed to sim-
ulate environmental domain shifts. For this purpose, machine noises
are mixed with background noises recorded in real factories accord-
ing to specific SNRs. In order to make the machine sounds and
the background noise acoustically coherent, an acoustic simulation
is performed to simulate a virtual acoustic environment in which
sound sources, i.e. the background noises and the machine sounds,
and a virtual microphone are present. Fig. 3 shows the configuration
of the virtual acoustic environment in which the background noise
sources are placed at the corners of a shoebox room with dimen-
sions 10 × 7.5 × 4 meters. The acoustic simulation is performed
by employing the image source method (ISM) [19], which is used
to calculate the room impulse response (RIR) of each virtual source
and the virtual microphone, thus modeling the multi-path propaga-
tion of sound sources in the reverberant environment. In particular,
the Pyroomacoustics library [20] is used to implement the ISM and
to obtain the RIRs with a fixed reverberation time of T60 = 0.5 s.

Given the static nature of the acoustic environment under con-
sideration, the RIRs are computed once for the entire dataset. The
subsequent audio processing steps are as follows:

• Selection and Cropping: A background noise signal n is se-
lected and cropped to match the length of the anechoic machine
sound.

• Reverberation of Background Noise: The background noise
signal n is convolved with the RIRs of the background noise

Figure 3: Acoustic environment simulated with the ISM. The red
squares indicate the position of the background noise emitters, the
blue circle the position of the machine sound emitter and the green
triangle the position of the virtual microphone that senses the multi-
path propagation of the sound sources.

emitters, producing the reverberated background noise signal
at the virtual microphone nrev.

• Reverberation of Machine Sound: The machine sound xanech
mic is

convolved with its corresponding RIR, yielding xrev
mic.

• Scaling for SNR: The background noise nrev is scaled to
achieve the desired SNR using

nscaled = nrev

√
Pxrev

mic

10SNR/10Pnrev
(1)

where Pnrev and Pxrev
mic

denote the power of the reverberated
background noise and machine sound, respectively. SNRs are
set according to Tab. 1.

• Final Cropping and Mixing: The signals xrev
mic and nscaled are

cropped to the original machine sample length to remove the
reverberation tail and are then mixed to produce the final audio
sample used in the dataset.

Note that, in this work, we assume that the coupling of the ma-
chine with its surrounding environment is reflected only in the au-
dio signals, as the acoustic coupling is more relevant than the oth-
ers. The same setup used for the IMADS-DS dataset has also been
used for generating audio files for the DCASE2024 task2 challenge
First-Shot Unsupervised Anomalous Sound Detection for Machine
Condition Monitoring.

4. EVALUATION AND BENCHMARK

To give an idea of the use and usefulness of the IMAD-DS dataset,
we tested each machine sub-dataset on a simple baseline system.
The Python codes for training, testing and creating the training and
test data are available in the IMAD-DS dataset public repository.

4.1. Baseline

As a benchmark system, we use a fully-connected autoencoder
(AE) that attempts to reconstruct an input vector consisting of all
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multi-rate, multi-sensor data related to the same temporal window.
When an anomalous input is presented, a larger reconstruction er-
ror is expected, making the reconstruction error a valid anomaly
score metric for unsupervised AD. The input of the baseline sys-
tem consists of a column vector obtained by concatenating 100
ms windows of multi-sensor data. We denote each sensor data
as xs ∈ RLsCs , where s ∈ S ≜ {mic, acc, gyr} denotes a
specific sensor, Ls is the number of samples in the 100 ms win-
dow given the sensor’s sampling frequency, and Cs is the num-
ber of channels for that sensor (e.g., the accelerometer has x-, y-
and z- axis components). Note that we stack all the sensor chan-
nels to form a single column vector of size

∑
s∈S LsCs. More-

over, we apply a z-score normalization for each sensor channel,
thereby obtaining the normalized sensor data x̃s ∈ RLsCs . Fi-
nally, the input of the AE is expressed as the concatenation of each
normalized and stacked sensor data, i.e., x = [x̃T

mic, x̃
T
acc, x̃

T
gyr]

T .
The model encoder E(·|θe), defined by trainable parameters θe,
is composed of 3 fully connected (FC) layers with ReLU ac-
tivation function [21], namely FC(

∑
s∈S LsCs, 2048,ReLU),

FC(2048, 2048,ReLU) and FC(2048, 2048,ReLU), and a bot-
tleneck layer FC(2048, 16, ·). The decoder D(·|θd) mirrors the
architecture of the encoder, with parameters θd. The model output
is therefore the reconstructed input vector x′ = D(E(x|θe)|θd).
The parameters of the encoder and decoder neural networks (i.e.,
θ = (θe, θd)) are trained to minimize the loss function given as

L(θe, θd) =
1∑

s∈S LsCs
∥x−D(E(x|θe)|θd)∥22 (2)

We trained the model with the Adam optimizer [22] with a learning
rate of 10−4 and a batch size of 1024.

4.2. Results

To assess the AD performance of our benchmark model, we use the
Area Under the Receiver Operating Characteristic Curve [23], i.e.,

AUC =
1

N−
d N+

d

N−
d∑

i=1

N+
d∑

j=1

H
(
Aθ(X+

j )−Aθ(X−
i )

)
, (3)

where X−
i represents the ith normal data segment from the set of

normal test data segments {X−
i }N

−
d

i=1 , and X+
j is the jth anoma-

lous data segment from the set of anomalous test data segments

{X+
j }N

+
d

j=1. Each data segment consists of several 100 ms win-
dows. In this context, N−

d and N+
d denote the total num-

ber of normal and anomalous test segments, respectively, with
d ∈ {Source, Target, Source + Target} specifying the domain un-
der consideration. The anomaly score Aθ(·) of each segment is
the median reconstruction error of all inputs x within the segment.
The function H(·) outputs 1 if its input is positive, and 0 otherwise.
Tab 4 summarizes the AD performance of the benchmark system.
The columns labeled ‘Source’, ‘Target’, and ‘S + T’ present the
AUC metrics for the source domain, the target domain, and the com-
bined domain, respectively. The ‘Overall’ row displays the AUC
calculated using the anomaly score from (2). To assess the benefits
of using multi-sensor data over a single sensor setup, we also set all
but one sensor data to zero. For instance, to evaluate the AD per-
formance with only the microphone, we use as input to the AE the
vector x = [x̃T

mic,0
T ,0T ]T . For this configuration, (2) is evaluated

on the subvectors corresponding to the microphone data only, i.e.,

x[: LmicCmic] for the input and x′[: LmicCmic] for the reconstructed
output. The corresponding AUC metric is denoted in Tab. 4 as
‘S-mic’. Moreover, we can also evaluate the single sensor AD per-
formance when the others sensor data is present, i.e., when using
as input to the AE x = [x̃T

mic, x̃
T
acc, x̃

T
gyr]

T . For instance, to evaluate
how AD performance of just the microphone is influenced by other
sensors, we use again (2) on the microphone subvectors. The corre-
sponding AUC is denoted in Tab. 4 as ‘F-mic’. Results indicate that

Machine Robotic Arm Brushless Motor

Domain S + T Source Target S + T Source Target

Overall 91.62 93.28 90.48 58.95 73.63 55.59

F-acc 90.49 98.98 94.00 69.30 77.80 59.62
S-acc 88.96 98.40 84.24 67.38 77.17 56.03

F-gyr 87.88 93.91 93.37 57.27 68.28 55.70
S-gyr 46.79 44.99 48.54 57.38 68.11 56.49

F-mic 66.31 73.27 63.18 54.19 58.83 49.27
S-mic 50.92 52.11 49.69 50.71 53.13 46.10

Table 4: Baseline AUC results, in percentage.

sensor-specific AUCs generally improve when incorporating data
from other sensors, rather than relying solely on their own data.
This suggests that multi-sensor data enhances performance even for
single-sensor AD tasks. Furthermore, superior performance in the
source domain over the target domain suggests domain shifts pose
a challenge in the IMAD-DS dataset. In some instances, the ‘S + T’
AUC is lower than that of individual domains, as seen with ‘F-acc’
AUCs for the Robotic Arm dataset. This occurs when normal sam-
ples in the target domain have higher anomaly scores than anoma-
lous samples in the source domain, leading the model to mistake
domain changes for anomalies. For the Robotic Arm, the ‘Overall’
AUC exceeds individual sensors’ AUCs in ‘S + T’ domain, which
is not the case for the Brushless Motor dataset. This suggests that
while sensor data fusion often aids AD, using (2) as an anomaly
score does not guarantee that using all sensors always yield optimal
performance. Therefore, exploring alternative multi-sensor meth-
ods is key to fully exploiting the potential of multi-sensor data.

5. CONCLUSIONS

We presented IMAD-DS, a dataset developed to support the cre-
ation of domain adaptation and generalization strategies specifically
tailored for multi-rate, multi-sensor AD systems in industrial set-
tings. IMAD-DS includes both normal and abnormal operational
data from two scaled versions of industrial machines, each collected
under different operational scenarios to account for the variability in
the domain. Our experiments with a fusing AE show improvements
in AD when data from multiple sensors are included, compared to
using data from a single sensor. Furthermore, we observe a de-
crease in AD efficacy due to domain shifts. This emphasizes the
crucial role of IMAD-DS in the development of robust multi-rate
multi-sensor systems for AD.
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