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ABSTRACT

Acoustic scene classification (ASC) predominantly relies on su-
pervised approaches. However, acquiring labeled data for train-
ing ASC models is often costly and time-consuming. Recently,
self-supervised learning (SSL) has emerged as a powerful method
for extracting features from unlabeled audio data, benefiting many
downstream audio tasks. This paper proposes a data-efficient and
low-complexity ASC system by leveraging self-supervised audio
representations extracted from general-purpose audio datasets. We
introduce BEATs, an audio SSL pre-trained model, to extract the
general representations from AudioSet. Through extensive experi-
ments, it has been demonstrated that the self-supervised audio rep-
resentations can help to achieve high ASC accuracy with limited
labeled fine-tuning data. Furthermore, we find that ensembling the
SSL models fine-tuned with different strategies contributes to a fur-
ther performance improvement. To meet low-complexity require-
ments, we use knowledge distillation to transfer the self-supervised
knowledge from large teacher models to an efficient student model.
The experimental results suggest that the self-supervised teachers
effectively improve the classification accuracy of the student model.
Our best-performing system obtains an average accuracy of 56.7%1.

Index Terms— Acoustic scene classification, data efficiency,
self-supervised learning, fine-tuning, knowledge distillation

1. INTRODUCTION

Acoustic Scene Classification (ASC) is a task to recognize the envi-
ronment in which an audio recording was captured, such as streets,
parks, or airports [1]. Traditional approaches to ASC typically rely
on supervised learning techniques [2, 3, 4, 5], which require large,
labeled datasets to perform effectively. However, obtaining such
labeled datasets is a resource-intensive process, often involving ex-
tensive manual annotation and data collection efforts. In the task 1
of the DCASE 2024 Challenge, participants are required to create
low-complexity ASC systems that are trained with limited labeled
data [6]. Specifically, five training subsets are provided, including
5%, 10%, 25%, 50%, and 100% of the original training set’s size.
The performance of the submitted systems, trained on 5 subsets, is
assessed by the average accuracy. This task encourages the develop-
ment of efficient models capable of maintaining high performance
despite reduced training data, advancing the practical applicability
and scalability of ASC systems in real world.

1https://github.com/yqcai888/easy_dcase_task1

In recent years, self-supervised learning (SSL) has been widely
applied to address the scarcity of labeled data in audio tasks. SSL
leverages the structure of the data to create supervisory signals,
allowing models to learn meaningful representations from unla-
beled audio data. SSAST [7] introduces a masking strategy on
the input spectrogram patches, allowing the transformer model to
be pre-trained using both reconstruction loss and contrastive loss.
Similarly, Audio-MAE [8] and MaskSpec [9] pre-train an encoder-
decoder transformer architecture by reconstructing the original au-
dio spectrogram from its masked version. BEATs [10] focuses on
pre-training the transformer encoder by predicting the discrete la-
bels generated by an acoustic tokenizer. After SSL pre-training on
the general-purpose datasets, these models can be fine-tuned for var-
ious labeled tasks, such as keyword spotting and sound event detec-
tion. However, the application of audio self-supervised pre-trained
models to ASC has been relatively unexplored.

In this work, we propose a data-efficient and low-complexity
system with audio self-supervised pre-trained models for ASC. In
Section 2, BEATs [10], an audio transformer model SSL pre-trained
on AudioSet [11], is introduced. The pre-trained encoders of mod-
els are then appended with a new linear classifier and fine-tuned on
the ASC dataset. We experiment with various fine-tuning strategies
and data augmentation techniques. The results demonstrate that the
self-supervised representations extracted from the general-purpose
audio dataset can significantly improve the ASC accuracy with lim-
ited labeled data. Moreover, it has been found that the ensemble
of SSL models fine-tuned with different strategies makes further
improvements to the ASC performance. Section 3 focuses on ad-
dressing the complexity requirements, where a knowledge distilla-
tion framework [3] is used to transfer the self-supervised knowledge
from BEATs to TF-SepNet-64 [12, 13], which is an efficient CNN-
based ASC model. The experimental results and ablation study are
detailed in Section 4. It shows that the self-supervised teachers sig-
nificantly improve the performance of student model, achieving an
average accuracy of 56.7%. Our submitted system ranked 4th in the
DCASE 2024 Challenge [13].

2. SELF-SUPERVISED PRE-TRAINING AND
FINE-TUNING

In this section, we aim to achieve high ASC accuracy with lim-
ited labeled data by leveraging the self-supervised audio represen-
tations. Specifically, we introduce BEATs, a state-of-the-art audio
SSL model, to extract the general features from AudioSet [11]. The
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Figure 1: Proposed data-efficient and low-complexity ASC sys-
tem. (a) Self-supervised pre-training BEATs on AudioSet. (b) Fine-
tuning pre-trained BEATs on ASC dataset. (c) Distilling knowledge
from fine-tuned BEATs to TF-SepNet-64. Snowflake icon indi-
cates that the parameters of the corresponding part are frozen, while
Flame icon indicates the opposite.

SSL pre-trained models are then experimented with two fine-tuning
strategies, frozen fine-tuning and unfrozen fine-tuning, for adapting
to the ASC task. Experimental results are presented in Section 4.1.

2.1. BEATs

Bidirectional Encoder representation from Audio Transformers
(BEATs) [10] is an audio pre-training framework that iteratively
optimizes an acoustic tokenizer and an audio SSL model. As il-
lustrated in Figure 1 (a), the BEATs tokenizer generates discrete
labels of unlabeled audio, which the BEATs model learns to pre-
dict. Concurrently, the tokenizer is trained by distilling knowledge
from the pre-trained BEATs model, enabling iterative optimization
of both components. The authors argue that discrete label predic-
tion captures high-level audio semantics more effectively than the
reconstruction loss used in previous audio SSL models. The tok-
enizer and label predictor of SSL model are discarded after self-
supervised pre-training. In the original work, BEATs models are
self-supervised pre-trained, and alternatively supervised fine-tuned,
on AudioSet before applying to downstream tasks. For convinience,
we denote the purely self-supervised pre-trained BEATs model as

Model 5% 10% 25% 50% 100% Avg.

BEATs (SSL)* 50.7 52.0 54.2 55.0 55.8 53.5
BEATs (SSL) 52.9 54.9 58.1 59.7 61.2 57.4
BEATs (SSL+SL) 54.3 56.6 59.7 60.7 62.1 58.7

3 Ensemble 55.4 57.6 61.1 62.2 64.2 60.1
12 Ensemble 55.8 58.0 61.6 62.9 64.6 60.6

Table 1: Accuracy of fine-tuned BEATs on the test set of TAU Ur-
ban Acoustic Scene 2022 Mobile development dataset [14]. SSL
denotes the BEATs model is self-supervised pre-trained on Au-
dioSet. SSL+SL denotes the SSL pre-trained BEATs model is addi-
tionally supervised fine-tuned on AudioSet. * indicates the encoder
of BEATs is frozen during the fine-tuning on ASC dataset. Top-1
accuracy of 5 independent runs is presented.

BEATs (SSL). The SSL pre-trained BEATs with additional super-
vised fine-tuning on AudioSet is denoted as BEATs (SSL+SL).

Before fine-tuning for ASC, the reserved BEATs encoder is ap-
pended with a task-specific linear classifier to output class proba-
bilities for different acoustic scenes, as shown in Figure 1 (b). The
linear classifier consists of a linear layer, a mean-pooling layer and a
softmax operation. The fine-tuning data is from TAU Urban Acous-
tic Scene 2022 Mobile development dataset [14]. Each audio clip is
resampled to 16 kHz, and 128-dimensional Mel-filter bank features
are extracted using a 25 ms Povey window with a 10 ms shift. The
features are normalized according to the mean and standard devia-
tion of AudioSet. Each acoustic feature x ∈ RF×T is then divided
into 16 × 16 patches and flattened into a sequence of patches to
serve as input for the pre-trained BEATs model.

2.2. Frozen Fine-tuning

To evaluate the benefits of self-supervised audio representations,
the encoder of BEATs (SSL) is frozen as a feature extractor while
only the linear classifier is trained with the cross entropy loss, as
shown in Figure 1 (b). The frozen model is denoted as BEATs
(SSL)*. Frozen fine-tuning allows the model to leverage represen-
tations learned during self-supervised pre-training, preventing over-
fitting and catastrophic forgetting [15]. We train BEATs (SSL)* for
60 epochs using the default Adam optimizer. To further enhance the
robustness and generalization of the model, we apply two widely-
used data augmentation methods: Mixup [16] with an α of 0.3 and
SpecAugmentation [17] with a mask ratio of 0.2.

2.3. Unfrozen Fine-tuning

Beside freezing the SSL models as feature extractors, we also ex-
plore unfrozen fine-tuning to further adapt BEATs to the ASC task.
Unfrozen fine-tuning allows the model to refine representations
learned during self-supervised pre-training, typically leading to bet-
ter performance compared to frozen fine-tuning.

We apply BEATs (SSL) and BEATs (SSL+SL) for unfrozen
fine-tuning, using the same training configurations. The models are
fine-tuned for 30 epochs with a batch size of 512. The AdamW
optimizer [18] is applied with β = (0.9, 0.98) and a weight decay
of 0.01. The learning rate is scheduled to exponentially increase
from 0 to a peak value of 1 × 10−5 over four epochs, then lin-
early decrease to a minimum value of 5 × 10−8 for the remaining
epochs. Four data augmentation techniques are used during fine-
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tuning: Mixup [16] with α = 0.3, Freq-MixStyle [19] with α = 0.4
and pfms = 0.4, SpecAugmentation [17] with a mask ratio of 0.2,
and DIR augmentation [20] with pdir = 0.6.

2.4. Ensemble Models

Previous works [3, 19] have shown that model ensemble with dif-
ferent configurations can enhance ASC performance and benefit
knowledge distillation. In this work, we average the logits to ensem-
ble BEATs models that fine-tuned with different fine-tuning strate-
gies. The small ensemble consists of three fine-tuned BEATs mod-
els: BEATs (SSL)*, BEATs (SSL) and BEATs (SSL+SL). The large
ensemble includes twelve fine-tuned BEATs models: one BEATs
(SSL)*, one BEATs (SSL) and ten BEATs (SSL+SL). The ten
BEATs (SSL+SL) models are AudioSet fine-tuned BEATs models
with different tokenizers as described in the original work [10].

3. KNOWLEDGE DISTILLATION WITH
SELF-SUPERVISED TEACHERS

DCASE Challenge 2024 task 1 imposes strict limitations on com-
putational complexity, restraining the model size within 128kB and
the number of multiply-accumulate operations within 30 MMACs.
In this section, knowledge distillation [21] is introduced to transfer
knowledge from the fine-tuned BEATs to an efficient student model,
TF-SepNet-64. By employing the self-supervised teachers, we aim
to develop ASC systems that operate within the computational lim-
its while maintaining high accuracy with limited labeled data. The
framework of proposed system is shown in Figure 1 (c).

3.1. TF-SepNet-64

Time-Frequency Separate Network (TF-SepNet) [12] is a deep
CNN architecture designed specifically for low-complexity ASC
tasks, achieving second place in DCASE Challenge 2023. TF-
SepNet processes features separately along the time and frequency
dimensions using one-dimensional (1D) kernels, which reduce
computational costs and provide a larger effective receptive field
(ERF), allowing the model to capture more time-frequency features.

As in [13], TF-SepNet-64 is optimized to meet the upper com-
plexity limit of the challenge requirements. Several adjustments
have been made. First, the number of base channels is set to 64.
Second, all Adaptive Residual Normalization layers [4] are replaced
with Residual Normalization layers [2] to reduce the number of
model parameters. Third, a Max-pooling layer is added before the
last TF-SepConvs block to further reduce the feature size. In the
finish, the total parameter number of TF-SepNet-64 is 126,858. For
an input feature size of (512, 64), the maximum number of MACs
per inference is 29.4196 MMACs.

3.2. Knowledge Distillation

We adopt the widely used knowledge distillation framework in pre-
vious years’ challenges [3, 19], which focuses on directly mimick-
ing the final predictions of the teacher model. As illustrated in Fig-
ure 1 (c), the knowledge transfer involves two main steps.

The input feature is a log-mel spectrogram x ∈ RF×T . For
the teacher path, once the self-supervised teachers are fine-tuned,
as shown in Figure 1 (b), the predictions on a specified training
subset are computed, serving as the teacher logits in the knowledge
distillation process. For the student path, the ASC student is trained

on the specified training subset using a combination of the ground
truth labels and the soft targets provided by the teacher model. Give
a vector of logits z as the outputs of the last classification layer of a
model, the soft targets are the probabilities that the input belongs to
the classes and can be estimated by a softmax function δ(·) as

δ(zi, τ) =
exp(zi/τ)∑
j exp(zj/τ)

(1)

where zi is the logit for the i-th class, and a temperature factor τ is
introduced to control the importance of each soft target. The train-
ing objective of student model is to minimize the divergence be-
tween the student’s predictions and the soft targets from the teacher,
as well as to correctly classify the labeled data. The overall loss
function for the student can be formulated as

L = λLCE(y, δ(zs)) + (1− λ)τ2LKL(δ(zt, τ), δ(zs, τ)) (2)

where LCE is the cross-entropy loss between the ground truth labels
and the student’s predictions, and LKL is the Kullback-Leibler di-
vergence between the soft targets from the teacher and the student’s
predictions. λ is a hyperparameter to balance the weight between
label and distillation loss.

3.3. Experimental Setup

Dataset and Baseline: The dataset for the task1 of DCASE 2024
Challenge has exactly the same content as the TAU Urban Acoustic
Scenes 2022 Mobile development dataset [14], but the training sets
of different sizes are provided. These train subsets contain approx-
imately 5%, 10%, 25%, 50%, and 100% of the audio snippets in
the training set provided in previous years. The DCASE baseline
model for comparison, CP-Mobile [22], is a fully-supervised CNN
classifier that achieved top ranking in DCASE Challenge 2023.
Feature Extraction: For TF-SepNet-64, we generally follow the
baseline settings [22] for feature extraction. The audio recordings
are firstly resampled to 32 kHz. Time-frequency representations are
then extracted using a 4096-point FFT with a window size of 96 ms
and a hop size of 16 ms. The primary difference in our approach
is the application of a Mel-scaled filter bank with a large number
of frequency bins, 512, to convert the spectrograms into mel spec-
trograms, which leads to a slight improvement on the classification
accuracy. The final input size for TF-SepNet-64 is (512, 64).
Data Augmentations: Data augmentation is a crucial technique in
ASC tasks, especially when the labeled data is limited. In this work,
we use a combination of Soft Mixup [13], Freq-MixStyle [19], and
Device Impulse Response (DIR) augmentation [20] to enhance the
diversity and quality of our training data. α of Soft Mixup is set
to 0.3. α and p of Freq-MixStyle are respectively set to 0.4 and
0.8. pdir of DIR augmentation is set to 0.4. All augmentations are
implemented to be plug-and-played during training.
Training: We train TF-SepNet-64 for 150 epoch using Adam op-
timizer with different initial learning rate for 5 subsets, 0.06 for
split5, 0.05 for split50 and 0.04 for all other splits. Stochastic Gra-
dient Descent with Warm Restarts (SGDR) [23] is applied with T0

=10 and Tmult = 2, where the learning rate is periodically reset to
initial value and then decayed with cosine annealing. The batch size
is set to 512. We fix λ = 0.02 and τ = 2 for the knowledge distil-
lation as in [3]. After training, Post-Training Static Quantization is
implemented through the Intel Neural Compressor2 to quantize the
weights of model into INT8 data type.

2https://intel.github.io/neural-compressor
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Model 5% 10% 25% 50% 100% Avg.

DCASE Baseline 42.4 45.3 50.3 53.2 57.0 49.6

TF-SepNet-64 45.7 51.1 55.6 59.6 62.5 54.9
+BEATs (SSL)* 48.2 51.0 54.9 58.0 59.9 54.4
+BEATs (SSL) 47.3 52.5 57.6 60.8 61.9 56.0
+BEATs (SSL+SL) 47.8 52.1 57.7 61.1 62.6 56.3
+3 Ensemble 49.0 52.3 57.9 60.7 63.5 56.7
+12 Ensemble 47.9 52.3 57.5 60.1 62.8 56.1

Table 2: Accuracy of TF-SepNet-64 with different BEATs teachers
on the test set of TAU Urban Acoustic Scene 2022 Mobile devel-
opment dataset [14]. The teacher logits of each BEATs model is
used (+) in knowledge distillation at a time. Top-1 and quantized
accuracy of 5 independent runs is presented.

Figure 2: TSNE [24] visualization of acoustic scene features ex-
tracted by TF-SepNet-64, which is trained on the 5% subset. Left:
Knowledge distillation is not applied. Right: Distilling knowledge
from the 3 ensemble BEATs teacher.

4. RESULTS

4.1. Performance of Fine-tuned BEATs

Table 1 presents the accuracy of fine-tuned BEATs using different
fine-tuning strategies. Even with the encoder frozen, BEATs (SSL)*
achieves over 50% accuracy with only 5% training data. This re-
sult demonstrates the self-supervised representations learned from
general-purpose audio dataset are beneficial to the ASC task, es-
pecially when labeled data is exceptionally limited. However, the
accuracy witnesses little improvements with the increase of training
data. This is due to the limited capability of a single linear layer to
adapt to changes in data scale. When the encoder is unfrozen during
fine-tuning, BEATs (SSL) shows a significant 3.9% improvement in
average accuracy. Additionally, the AudioSet supervised fine-tuned
model, BEATs (SSL+SL), achieves further improvements. For the
model ensembles, the 3 ensemble outperforms the best single model
by 1.4% in average accuracy, and the large 12 ensemble achieves an
average accuracy of 60.6%. The different fine-tuning strategies di-
versify the predictions for ensembling, effectively combining self-
supervised knowledge and supervised knowledge.

4.2. TF-SepNet-64 with BEATs Teachers

The performance of TF-SepNet-64 with various BEATs teachers is
shown in Table 2. TF-SepNet-64 without knowledge distillation
outperforms the DCASE baseline by 5.3% in average accuracy but
experiences considerable drop as the amount of training data de-
creases. The single BEATs (SSL)* teacher only helps in the 5%

System 5% 100% MMACs Param/k

Proposed System 49.0 63.5 29.4 126.9

Mel bins (512→256) 47.3 61.9 14.8 126.9
Base channels (64→40) 45.8 61.3 12.9 52.3
ResNorm→AdaResNorm 48.8 61.9 29.4 128.6
w/o added Max-pooling 45.9 63.3 32.0 126.9

w/o Soft Mixup 46.0 62.3 29.4 126.9
w/o Freq-MixStyle 47.0 61.6 29.4 126.9
w/o DIR Augmentaion 48.0 62.4 29.4 126.9

w/o BEATs teacher 45.7 62.5 29.4 126.9

Table 3: Ablation study of our proposed system (TF-SepNet-64 +
3 BEATs ensemble). Each component is changed (→) or removed
(w/o) at a time. MMACs (million multiply-accumulate operations)
represents the computational costs per inference. Param/k denotes
the number of parameters.

subset while BEATs (SSL) and BEATs (SSL+SL) improve the stu-
dent model across more subsets. By comparing the performance
between TF-SepNet-64 and BEATs, we infer that a teacher model
is generally helpful when it has a higher accuracy than the student.
Nevertheless, BEATs (SSL) helps to obtain the highest accuracy
in the 10% subset while BEATs (SSL+SL) is most effective in the
50% subset. Compared to individual teachers, the ensemble teach-
ers generally provide greater benefits to the student. Interestingly,
rather than the large 12 ensemble, the small 3 ensemble achieves
the best performance for the remaining subsets, obtaining the high-
est average accuracy of 56.7%. Therefore, a teacher with higher
accuracy does not necessarily guarantee better improvement for the
student. To further examine the benefits of BEATs teacher, we visu-
alize the acoustic scene features as shown in Figure 2. The samples
are better clustered with the assistance of BEATs teacher.

4.3. Ablation Study

Table 3 presents the ablation study for our proposed system (TF-
SepNet-64 + 3 BEATs ensemble) on the two extreme subset: 5%
and 100%. The configurations for TF-SepNet-64, such as using a
larger amounts of Mel bins, more base channels, replacing AdaRes-
Norm with ResNorm, and adding a Max-pooling layer, contributes
to performance improvements to varying degrees while maintaining
the system’s complexity within the challenge requirements. Mean-
while, the data augmentation methods enhance the accuracy without
introducing additional overheads. The results also indicate that the
BEATs teacher is the dominant factor in performance when labeled
training data is extremely limited.

5. CONCLUSION

In this paper, we introduce self-supervised audio representations
to address the challenge of data-efficient low-complexity acoustic
scene classification (ASC). We fine-tune BEATs models as self-
supervised teachers and then transfer the knowledge to a low-
complexity student model, TF-SepNet-64, through a knowledge
distillation framework. The experimental results demonstrate the
effectiveness of self-supervised pre-trained models in the ASC task,
and also show the benefits of self-supervised teachers for the low-
complexity student model when the labeled training data is limited.
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