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ABSTRACT

This technical report presents the objectives, evaluation, and base-
line changes for Task 3, Sound Event Localization and Detection
(SELD), of the DCASE2024 Challenge. While the development
and evaluation dataset, STARSS23, and the division of the task into
two tracks, audio-only and audiovisual (AV), remain the same, this
year introduces source distance estimation (SDE) along with de-
tection and direction-of-arrival (DOA) estimation of target sound
events. Changes in task evaluation metrics and the design and train-
ing of the baseline models due to this new SDE subtask are detailed
in the report and compared with the previous iteration of the chal-
lenge. Further baseline improvements regarding the integration of
video information are also presented. Overall, the design of highly
effective SELD models evaluated in real scenes with a limited vol-
ume of unbalanced training data has proven challenging. The intro-
duction of SDE makes the task even more demanding, as evidenced
by the low spatially-thresholded detection scores for both audio-
only and AV baselines. While distance estimation error results seem
promising, this comes at the expense of lower detection and DOA
estimation scores compared to the previous year’s baseline models
without SDE. Based on the current AV model design, video integra-
tion does not bring apparent estimation benefits compared to using
only audio input, indicating that more research is required into more
effective fusion strategies, model architectures, data augmentation
and simulation methods, or training strategies.

Index Terms— Sound event localization and detection, sound
source localization, acoustic scene analysis, microphone arrays

1. INTRODUCTION

The sound event localization and detection (SELD) task, detecting
the presence of sound events of target classes of interest and track-
ing their activity and location over time, has seen growing interest
from the time of the earliest publications [1]. A large part of the
research effort in this topic has been centered around the DCASE
challenge1 and the subsequent workshop, with the task developing
every year in terms of data complexity and realism [2–4].

The first three iterations of the task (2019-2021) were based on
synthesized spatial recordings including real ambient noise and re-
verberation. The data were generated with an elaborate synthesis
process based on real captured multi-room and multi-point room
impulse responses that allowed synthesis of both static and moving

1https://dcase.community/challenge2024/

reverberant sound events [3]. Some of the task aspects that were
considered in these first three SELD challenges were continuous
DOA estimation, varying signal-to-noise and direct-to-reverberant
ratios, moving sound sources, non-target-class interfering direc-
tional sound events, and multiple instances of the same class occur-
ring simultaneously. The top systems of those three first challenges
excelled at addressing these problems by employing improved out-
put representations of the SELD objectives [5–7] or advanced data
augmentation strategies [8].

However, those synthetic datasets lacked some important as-
pects of real sound scenes, mainly that of natural temporal and
spatial occurences and co-occurences that characterize real sound
events and their types as the result of the scene environment and
the actions and interactions of the agents in it. To advance SELD
research towards that direction, the next iterations up to the cur-
rent one (DCASE2022-2024) were based on a new dataset of spa-
tial recordings of real scenes [4, 9]. Annotations of sound event
activities for 13 sound classes were compiled by human listeners
and combined with optical tracking data of the source positions that
generated those sound events. 11 hours of such material were col-
lected in multiple rooms of two different sites. Contrary to the fairly
balanced earlier synthetic datasets, the presence of classes in the
real recordings was highly unbalanced, posing new challenges for
the participants. To cope with the increased difficulty of the task
and the small amount of training data, participants were allowed
to use external data, additional simulations of recordings and pre-
trained audio models. Creative use of such resources [10] together
with more powerful architectures driven by attention mechanisms
[11] allowed the top participants to achieve competitive results with
large gains over the baselines.

Additionally, in the 2023 challenge participants were allowed
to use 360° video input in addition to the typical audio input [4];
an effort to foster multimodal analysis and development towards di-
verse large scale training of SELD systems using video supervision.
Submissions of audiovisual systems did not exhibit a clear improve-
ment using this additional modality, with only one method achiev-
ing better results than using audio-only input. This first iteration of
audiovisual SELD models demonstrated that effective integration
of video information was not trivial and further research and ex-
perimentation was necessary. In this year’s DCASE2024 challenge
the task setup remains the same, as well as the development and
evaluation dataset, but with some important differences introduced
otherwise. In this report, an overview of changes in the SELD task
of DCASE2024 challenge is presented in terms of task objectives,
baseline models, and task evaluation.
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2. DISTANCE ESTIMATION

This year, we introduce a new part of the task, namely sound dis-
tance estimation. Research on DNN-based techniques for SDE has
been largely confined to the binaural format. These studies typically
use a classification method, assigning the source within a very lim-
ited set of distances or positions [12, 13]. A study by Kushwaha et
al. [14] investigated various loss functions for distance estimation
and included an activity detection component for a scenario with a
tetrahedral microphone array. Few works have explored the simul-
taneous estimation of distance and DOA [15–17]. Until recently,
there has been no effort to combine distance estimation with event
detection and localization. In [18], the authors have investigated a
single task and multi-task approach to 3D SELD for the binaural
format and Ambisonics. Following that paper, we include some of
the solutions in this years’ baseline to foster further research in this
area.

To employ the distance estimation task within the 3D SELD
architecture, we use the multi activity-coupled Cartesian Distance
and DOA (multi-ACCDDOA) method as described in [18]. The
method is basically an extension of the multi-ACCDOA output pro-
posed in [19]. Compared with the former, the 3-element DOA vec-
tor is extended to include the distance estimate as well. For N
tracks, C classes, and T frames, the output is defined as ynct =
[anctRnct, Dnct], where n, c, t indicate the output track number,
target class, and time frame, anct ∈ {0, 1} stands for the detection
activity, Rnct ∈ ⟨−1, 1⟩3 is the DOA vector, and Dnct ∈ ⟨0,∞)
corresponds to distance values. The dimensions hold the follow-
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Figure 1: Audiovisual baseline model architecture.

ing characteristics: a, D ∈ RN×C×T ,R ∈ R3×N×C×T , and
||Rnct|| = 1. We model up to N = 3 and C = 13. The whole
output is linear to contain the range of both DOA and distance val-
ues. The multi-ACCDDOA model is trained using Auxiliary Dupli-
cating Permutation Invariant Training (ADPIT) as in [19]. The final
loss function is defined as:

LADPIT =
1

CT

C∑
c

T∑
t

min
α∈Perm[ct]

lACCDDOA
α,ct , (1)

lACCDDOA
α,ct =

1

N

N∑
n

L(yα,nct, ŷα,nct), (2)

where L(·) is the mean square error loss function, α is one possible
track permutation and Perm[ct] is the set of all possible permuta-
tions.

3. BASELINE

For the audio baseline, we retain the same architecture from the pre-
vious challenge. It is a modified version of the SELDnet presented
in [1]. Last year, we introduced multi-head self-attention blocks in
the SELDnet architecture based on the findings in [20].

For the last year’s audiovisual baseline [4], an object detec-
tor [21] was used to extract visual information. The bounding box
outputs were encoded to vectors along with azimuth and eleva-
tion [22]. The encoded vectors were treated as visual features in
the previous challenge [4]. In this edition of the challenge, the vi-
sual pipeline is simplified. Inspired by the work in [23], we use a
pre-trained ResNet-50 [24] to extract the visual features from each
frame of the video corresponding to the audio input. This visual
representation of the input video is combined with the audio repre-
sentation using audio-visual fusion layers. A transformer decoder
block [25] with 2 layers, having an attention size of 128 with 8
heads is used for the fusion of audio and visual features. The new
audio-visual baseline architecture used in the challenge is shown in
Figure 1.

Differing from previous years, we changed the training proce-
dure to fairly compare the performances of the audio-only model
and the audio-visual model. In the previous iterations of the chal-
lenge, the audio baseline was trained simultaneously on the syn-
thetic dataset and the train split of the STARSS23 development data.
However, it is to be noted that the synthetic data is available only
for the audio data and hence direct comparison of the audio-only
and the audio-visual models was not possible. To this end, we first
trained the audio baseline model on the synthetic dataset and use
it for initializing the weights of the audio feature extraction layers
for both the audio-only and audio-viusal models. As a second step,
we trained both the models on the STARSS23 development dataset.
Generation of synthetic data was switched this year from the pro-
vided code by the task organizers to the more flexible spatialScaper
[26] published recently.

4. EVALUATION METRICS

In previous editions of the challenge, the models were evaluated ac-
cording to four metrics: localization-dependent F-score (F20◦ ) and
error rate (ER20◦ ) and class-dependent localization error (LEc)
and localization recall (LRc), all of them computed in one-second
non-overlapping segments [2, 27]. One of our goals in this edi-
tion was to simplify the evaluation, so we decided to drop the error
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Figure 2: F-score of the 2024 audiovisual baseline system on
the evaluation dataset for different values of relative and absolute
thresholds. The DOA error threshold was set to 20◦ in all the ex-
periments.

rate and the localization recall and keep the localization-dependent
F-score (which focuses on detection) and the class-dependent local-
ization error (which focuses on the DOA estimation) and to add a
new distance estimation metric. In order to make clear that the lo-
calization error only evaluates the DOA estimation without taking
into account the distance estimation, we renamed it to DOA error
(DOAEc).

4.1. Frame-based metrics

The computation of the metrics in one-second non-overlapping seg-
ments done in previous challenges [27] was a common practice for
evaluating SED systems [28], but not for localization and tracking.
It made the metrics and the evaluation code more difficult to inter-
pret and maintain and also prevented them from being extended to
more tracking-based metrics in the future, such as measuring the
identity-switch ratio, which must be computed at frame level (i.e.
for every time output of the system).

Therefore, we decided to compute the metrics at frame level
this year. In table 1 we can see the metrics of the top-5 systems
resulting from re-evaluating the audio-only systems from the previ-
ous challenge at frame level and the comparison with the original
segment-based evaluation. We can see how there are no changes
in the leaderboard and the metrics slightly degrade but without dra-
matic changes.

4.2. Distance estimation evaluation

The main novelty of this year’s challenge was introducing distance
estimation into the SELD task. Since we are now estimating both
DOA and distance, we could have combined both into a 3D posi-
tion estimation and evaluated it just as the Euclidean distance in
meters to the actual source position. However, distance estimation
is a more difficult task than DOA estimation when working with
compact arrays due to the geometrical and physical principles of
the problem, so we could expect the errors of the distance estima-
tion to be quite larger than the ones of the DOA estimation. Hence,
we preferred to keep the evaluation of both estimations separately.

Also due to the geometrical principles of the problem, distance
estimation with compact arrays becomes harder when distance in-
creases (the impact of distance in the phase differences between mi-
crophones reduces) so we decided to evaluate the distance in terms
of relative distance (i.e. the ratio of the difference between the es-
timated and actual distance and the actual distance) instead of in
absolute terms. This also fits most applications, where an absolute
error of a few centimeters is more important if the source is closer
to the microphones than if it is several meters away.

We did not want poor distance estimations to penalize the F-
score too much this year, so we chose a relative error threshold of 1
so only really large errors have an impact on it. Figure 2 shows how
the F-score of the baseline degrades when the distance estimation
error threshold is reduced. In the following editions of the chal-
lenge, we will adjust the threshold according to the performance of
the systems submitted this year.

4.3. Estimate-reference assignment

When we have several estimated and/or reference events of the same
class simultaneously, we need to assign the estimates to the refer-
ences before computing the evaluation metrics. In previous editions
of the challenge, we did this by using the Hungarian algorithm [29]
to find the assignment that minimized the DOA error. As previously
explained, since this year we also have distance estimation, we can
compute the localization error (LE) defined as the Euclidean dis-
tance between the estimate and the reference position, so we could
use the Hungarian algorithm to minimize this metric instead of the
DOAE. However, since we are not using this LE as an evaluation
metric, we decided to maintain the estimate-reference assignment
as in previous editions of the challenge.

Table 2 compares the results of the audio-only baseline model
when the assignment is done to optimize the DOAE and the LE.
We can see how the differences of both approaches are minimal
since this only affects to the situations where there are several con-
current events of the same class, which is not very frequent in the
STARSS23 dataset.

Frame-based Segment-based

Rank Submission ER20◦ F20◦ DOAEc LRc Submission ER20◦ F20◦ DOAEc LRc

1 Du NERCSLIP task3a 1 0.34 59.8% 12.9◦ 67.5% Du NERCSLIP task3a 1 0.33 62.7% 12.9◦ 72.1%
2 Liu CQUPT task3a 2 0.37 54.0% 13.7◦ 61.5% Liu CQUPT task3a 2 0.35 58.5% 13.5◦ 65.7%
3 Yang IACAS task3a 2 0.36 50.2% 16.3◦ 61.0% Yang IACAS task3a 2 0.35 54.5% 15.8◦ 66.7%
4 Kang KT task3a 2 0.41 48.0% 15.3◦ 60.7% Kang KT task3a 2 0.40 51.4% 15.0◦ 63.8%
5 Kim KU task3a 4 0.46 46.1% 14.9◦ 58.1% Kim KU task3a 4 0.45 49.0% 15.0◦ 62.5%

Table 1: Comparison of the frame-based and segment-based metrics applied to the system of the challenge 2023.
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Assignation F20◦ DOAEc RDEc LEc [cm]

DOAE 18.0% 29.6◦ 0.31 137.6
LE 17.9% 29.7◦ 0.31 137.4

Table 2: 2024 audio-only baseline results when the assignment be-
tween estimates and references of concurrent events of the same
class are done to minimize the DOAE or the LE.

5. RESULTS

Incorporating all the changes, Table 3 summarizes the results of the
baseline models on the STARSS23 evaluation dataset trained for
the SELD task along with distance estimation with the new frame-
based metrics using the Multi-ACCDDOA loss. The performance
of the models on both 4-channel ambisonic (FOA) and tetrahedral
microphone array (MIC) audio formats are presented for compari-
son.

Dataset Format F20◦ DOAEc RDEc

Audio FOA 18.0% 29.6◦ 0.31
Audio-visual FOA 15.5% 34.7◦ 0.31
Audio MIC-GCC 16.0% 34.2◦ 0.30
Audio-visual MIC-GCC 15.8% 36.0◦ 0.30

Table 3: Baseline results on STARSS23 evaluation dataset.

Compared with the baselines of the previous edition of the chal-
lenge, we can observe a reduction in the performance of the audio-
only system. This is due to 1. the addition of the distance estimation
task, which makes the problem harder, and 2. the changes in the
training pipeline, where synthetic data was only used to pre-train
the audio feature extraction layers as done in the audio-visual sys-
tem. On the other hand, the performance of the audio-visual system
has clearly improved compared to the previous edition of the chal-
lenge thanks to the changes done in the visual feature extraction, so
we are narrowing the gap between both systems. However, further
research is still needed to really exploit the visual information of the
360◦ video input.

6. CONCLUSIONS

This report highlights the changes introduced in the SELD task of
DCASE2024 challenge. Most of the changes on baseline models,
and task evaluation are associated to the newly-introduced distance
estimation objective of the challenge. Distance estimation with a
single compact array makes the task significantly more challenging
as can be observed from the low baseline results for both audio-only
and audiovisual tracks. Training losses and metrics are adapted in
order to accommodate the new objective effectively. Audiovisual
processing for the currently proposed baseline remains inferior to
the baseline using only audio input.
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