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ABSTRACT

In this work, we aim to analyze and optimize the EnCLAP frame-
work, a state-of-the-art model in automated audio captioning. We
investigate the impact of modifying the acoustic encoder compo-
nents, explore pretraining with different dataset scales, and study the
effectiveness of a reranking scheme. Through extensive experimen-
tation and quantitative analysis of generated captions, we develop
EnCLAP++, an enhanced version that significantly surpasses the
original.

Index Terms— Automated audio captioning, language-based
audio retrieval, neural audio codec, audio-text joint embedding

1. INTRODUCTION

Automated audio captioning (AAC), a cross-modal translation involv-
ing transcribing audio signals into concise and meaningful natural
language descriptions [1], remains a particularly challenging task
with a substantial performance gap between human and machine.
One significant contributor to the performance gap can be attributed
to the intrinsic complexity of the task, as distinguishing between var-
ious sound events, especially between similar and ambiguous ones,
requires extensive real-world knowledge. Furthermore, the scarcity
of high-quality data, with the most widely used datasets, AudioCaps
[2] and Clotho [3] containing only 50K and 20K captions, respec-
tively, poses an additional challenge. To address these challenges,
prior studies have employed pretrained audio encoders trained on
audio classification tasks [4, 5, 6], leveraged the text generation capa-
bilities of pretrained language models like GPT-2 [7, 8, 9] and BART
[10, 11], and incorporated auxiliary loss terms, including keyword
prediction loss [12] or sentence embedding loss [13], to improve the
semantic quality of captions and provide additional training signal.

Building on the previous line of research, Kim et al. [14] pro-
posed the EnCLAP framework which integrates a set of pretrained
models with an auxiliary training task. Specifically, EnCLAP uti-
lizes two acoustic feature encoders, EnCodec [15] and CLAP [16],
to generate timestep-level and sequence-level representation of the
input audio sequence, respectively. EnCLAP utilizes pretrained
BART as the caption decoder to leverage these features and generate
captions. Furthermore, Kim et al. also introduced masked codec
modeling (MCM), an auxiliary task which involves masking a part
of the input codec sequence and predicting it, to enhance the acoustic
awareness of the caption decoder. The caption decoder was trained
jointly using cross-entropy loss for caption generation and MCM
loss. The combination of these approaches allowed EnCLAP to
achieve state-of-the-art performance on the AudioCaps dataset.

Although EnCLAP exhibits impressive performance, the study
by Kim et al. lacks sufficient experimental evaluation for deter-
mining the optimal models for the model components. Notably,
the authors do not investigate alternative sequence-level acoustic
features beyond CLAP. Furthermore, for timestep-level acoustic
features, while they demonstrate that discrete codec input outper-
forms continuous input, their analysis is restricted to a single setup
using EnCodec, without exploring other options or configurations.
Additionally, Kim et al. acknowledge the issue of overfitting in
larger model variants but do not investigate the use of large-scale
weakly-labeled datasets [17, 6], which contain noisy and model-
generated captions. Therefore, the EnCLAP framework has potential
for further optimization.

In this work, we extend and optimize the EnCLAP framework
through a comprehensive examination of its components. We ex-
plore alternative acoustic feature encoder components and assess
their efficacy. We also investigate the impact of large-scale training
incorporating weakly-labeled datasets on the framework’s perfor-
mance. Furthermore, we adopt a sampling-and-reranking approach
[6] as an alternative to beam search decoding and evaluate its effec-
tiveness. Finally, we conduct a qualitative analysis of the generated
captions to examine the effects of each component on the outputs.
Based on our findings, we present EnCLAP++, an improved version
of the EnCLAP model that achieved second place in the DCASE2024
Challenge Task6. Figure 1 provides an overview of EnCLAP++.

2. EXPERIMENTAL DESIGN

2.1. Timestep-level Acoustic Embedding

Neural audio codecs are autoencoder models designed to encode
waveforms into sequences of discrete codes. Recent advancements
[18, 15, 19] typically employ residual vector quantization (RVQ) for
compression, utilizing multiple codebooks to quantize the residu-
als of preceding codebooks. Ultimately, the input waveforms are
transformed into a set of parallel discrete code sequences, each of
which is associated with a unique codebook. Neural audio codecs
have demonstrated success as the acoustic representation format in
generative audio models [20, 21, 22].

Kim et al. [14] demonstrate that language models achieve supe-
rior performance when used with discrete input sequences compared
to continuous input sequences. However, their study does not ex-
plore the impact of different configurations within the discrete input
sequence setup. To address this limitation, we conduct experiments
to examine the effects of different codec settings on the model per-
formance. Specifically, we investigate the effect of codebook size,
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Figure 1: Overall architecture of EnCLAP++

sample rate, and codec type on the final outcome.
The original EnCLAP employed a version of EnCodec [15] that

compresses a 24kHz audio signal into 16 discrete code sequences
at a rate of 75Hz, with a codebook size of 1024. We experiment
with two additional variants of EnCodec, which yield 8 and 32 code
sequences, respectively, as well as a variant that processes 48kHz
audio signal input. As for the alternative codec, we use a variant of
Descript Audio Codec (DAC) [19] that closely resembles the original
Encodec setup, which transforms 24kHz audio signal into 32 code
sequences at a rate of 75Hz. We opted for DAC as the alternative
codec due to its superior performance in audio compression, as well
as downstream tasks [19, 23].

2.2. Sequence-level Acoustic Embedding

While EnCLAP employs CLAP [16] as its sequence-level acoustic
feature encoder, preceding studies in audio captioning have pre-
dominantly utilized models pretrained on the AudioSet [24] dataset
for audio classification task [4, 5, 6]. In this work, we investigate
alternative candidates for the sequence-level acoustic encoder com-
ponent. Specifically, we examine the sequence-level representation
capabilities of a model pretrained on AudioSet with audio tagging
task and its variants, which have gone through additional audio-text
retrieval training. We compare the audio captioning performance of
these models with the original CLAP setup and assess the impact of
additional retrieval training on downstream performance.

For the baseline sequence-level encoder, we use ConvNext-Tiny
[25] pretrained on AudioSet classification, referred to as CNext,
and three of its variants that have undergone additional training on
datasets of varying scales. Specifically, the three dataset configu-
rations are: (1) Clotho [3], (2) AudioCaps [2] and Clotho, and (3)
WavCaps [17], AudioCaps, and Clotho. We use m-LTM framework
[26] and bge text encoder [27] for retrieval training. We assess the
performance of these models against the original CLAP version.

2.3. Large-scale Pretraining

The original EnCLAP described two versions of the model, denoted
as "base" and "large", based on the size of the underlying BART [10]
model used. The study highlights the issue of overfitting, especially
in the large variant with smaller training datasets. To mitigate this is-
sue, we draw on the recent trend in audio captioning, which involves
leveraging weakly-labeled datasets for pretraining [17, 6]. In partic-
ular, we evaluate a large-scale pretraining setup, where the model
is pretrained on the WavCaps, and finetuned on Clotho, against the
original EnCLAP dataset setup, where the model is pretrained on
AudioCaps and finetuned on Clotho. From WavCaps, we filter out

audio clips that fall outside the 1-30 second duration range, as well
as overlapping clips from AudioCaps and Clotho. We evaluate both
setups using both the base and large variants of our model.

2.4. Generation and Reranking

Previous works, including EnCLAP, have utilized beam search de-
coding for caption generation. However, Wu et al. [6] demonstrates
that the sampling-then-reranking approach yields more diverse and
informative captions. Wu et al. proposes two scores for candidate
reranking: the encoder reranking score and the decoder reranking
score. The encoder reranking score is the cosine similarity score
between the input audio representation and the generated caption rep-
resentation computed using a retriever model. The decoder reranking
score is the log-likelihood of the generated caption given the input
audio. In this study, we explore the benefits of incorporating the
reranking scheme into the EnCLAP framework. Specifically, we
compare the original beam search scheme against three reranking
setups: encoder reranking, decoder reranking, and hybrid reranking.
We use CLAP as the retriever model for computing the encoder
reranking score. We perform a fluency error-based filtering before
the reranking procedure, following Wu et al..

For sampling, we use nucleus sampling with a probability thresh-
old of 0.95 and a temperature of 0.5 to generate 30 candidates. For
hybrid reranking, we rank the candidates by the weighted sum of
the encoder reranking score and the decoder reranking score using
weights of 0.6 and 0.4, respectively.

2.5. Quantitative Evaluation Metric

We adopt both widely used AAC metrics, METEOR, CIDEr, SPICE,
and SPIDEr, and more recently proposed AAC metrics, SPIDEr-FL,
FENSE [28], and Vocab to evaluate various aspects of the generated
captions. All metrics are calculated using the aac-metrics library.
METEOR is a machine translation evaluation metric, based on un-
igram precision and recall. CIDEr and SPICE assess the syntactic
and semantic quality of the generated captions, respectively, while
SPIDEr is a linear combination of them. SPIDEr-FL is SPIDEr score
penalized by the fluency error. FENSE is the combination of the
SentenceBERT similarity score and the fluency error penalty. Vocab
shows the diversity of the vocabularies in the generated captions.

2.6. Qualitative Analysis

Although quantitative metrics provide valuable insights into relative
improvements in model performance, they are inherently limited, par-
ticularly in tasks such as audio captioning, where no single objective
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Table 1: Evaluation Results on Clotho. Ret refers to retrieval finetuning on the datasets listed in parentheses. CL, AC, and WC represent the
Clotho, AudioCaps, and WavCaps datasets, respectively. Base and Large indicate the size of the pretrained BART model.

Model METEOR CIDEr SPICE SPIDEr SPIDEr-FL Vocabulary FENSE
Timestep-level Representations

EnCLAP-base 0.180 0.461 0.128 0.294 0.291 535 0.497
w/ EnCodec, 8 codebooks 0.178 0.444 0.127 0.286 0.283 626 0.497
w/ EnCodec, 32 codebooks 0.180 0.446 0.128 0.287 0.285 658 0.503

w/ EnCodec, 48khz 0.179 0.441 0.125 0.283 0.281 610 0.505
w/ DAC 0.183 0.463 0.131 0.297 0.294 589 0.504

Sequence-level Representations
CLAP + DAC 0.183 0.463 0.131 0.297 0.294 589 0.504
CNext + DAC 0.175 0.426 0.120 0.273 0.269 584 0.488

CNext + Ret(CL) + DAC 0.179 0.431 0.127 0.279 0.274 677 0.497
CNext + Ret(CL+AC) + DAC 0.181 0.454 0.130 0.292 0.287 596 0.500

CNext + Ret(CL+AC+WC) + DAC 0.179 0.452 0.127 0.290 0.286 676 0.508
Large-Scale Pretraining

Base 0.183 0.463 0.131 0.297 0.294 589 0.504
Large 0.184 0.393 0.132 0.262 0.260 571 0.480

Base + WC Pretraining 0.185 0.470 0.134 0.302 0.299 620 0.505
Large + WC Pretraining 0.187 0.464 0.130 0.297 0.293 576 0.500

Generation and Reranking
Beam Search 0.185 0.470 0.134 0.302 0.299 620 0.505

Beam Search without Fluency error 0.185 0.470 0.135 0.302 0.302 619 0.511
Encoder Reranking 0.176 0.396 0.126 0.261 0.261 915 0.520
Decoder Reranking 0.187 0.460 0.139 0.299 0.299 608 0.506
Hybrid Reranking 0.190 0.479 0.142 0.310 0.310 699 0.526

truth exists. Thus, in addition to reporting quantitative metrics, we
perform a qualitative analysis of the generated captions. Specifically,
we identify the examples with the largest improvement in the evalu-
ation metric between the baseline and the best-performing variant
and manually examine the enhancement in the caption quality.

3. RESULTS AND ANALYSIS

3.1. Timestep-level Acoustic Embedding

Table 1 shows that substituting the EnCodec encoder with an alter-
native variant does not enhance the model’s performance and, in
fact, leads to incremental degradation. This indicates that changing
the timestep-level feature encoder across different EnCodec models
has a negligible effect on the performance in the audio captioning
task. Contrastively, replacing the EnCodec encoder with the DAC en-
coder leads to a modest improvement in the model performance. We
believe that the DAC’s superior ability to preserve the information
in the original audio signal contributes to the enhancement. There-
fore, we adopt DAC as the timestep-level acoustic feature encoder in
subsequent experiments.

3.2. Sequence-level Acoustic Embedding

As illustrated in Table 1, the model using CNext as the sequence-level
acoustic encoder falls behind the CLAP variant. However, the results
indicate that additional retrieval training boosts the audio captioning
performance and further, increasing the dataset size narrows the
performance gap relative to the CLAP variant. Nevertheless, none
of the CNext variants fully surpass the CLAP variant in terms of
performance. We attribute the performance gap to the fact that CLAP
was trained on a much larger scale than CNext, even with additional
training, which is consistent with our findings within the CNext
variants. Consequently, we will proceed with the original CLAP
variant in subsequent experiments.

3.3. Large-scale Pretraining

The third section of Table 1 demonstrates the effect of augmenting
the pretraining dataset with a large-scale weakly-labeled dataset.
Notably, our results for the original dataset setup replicate the phe-
nomenon observed in the original EnCLAP work, where the large
variant performs worse than the base variant. While variants with
large-scale pretraining also exhibit this issue, the performance degra-
dation is significantly less pronounced. Given that large-scale pre-
training substantially improves the base variant, we infer that even
the base variant can benefit from larger datasets. Our hypothesis is
that larger datasets are necessary to fully utilize the capabilities of
the large variant models.

3.4. Generation and Reranking

We investigated sampling and reranking techniques using the base
variant pretrained on WavCaps from Sec 3.3. The results are pre-
sented in the last section of Table 1. Our findings indicate that
encoder reranking enhances both the diversity of words and the
semantic content of the generated captions. However, this improve-
ment in semantic quality comes at the expense of syntactic quality. In
contrast, decoder reranking alone yields results comparable to beam
search, while when encoder and decoder reranking are combined,
there is a significant improvement in semantic quality without any
degradation in syntactic quality.

3.5. Qualitative Analysis

Timestep-level Acoustic Embedding. The variant without DAC
tends to focus on the most prominent event in a clip, but frequently
overlooks background and supplementary acoustic events. This
shortcoming can be attributed to the inherent constraint of relying on
a single vector to represent the entire clip, which can lead to a loss
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Table 2: Example of the generated captions.
Timestep-level Representations

w/o DAC w/ DAC Ground Truth
A person walks on a hard A person is walking on a hard surface A person walking down a beach boardwalk with seagulls squawking
surface at a constant pace while birds are chirping overhead and people chatting in the background near the end

A woman is speaking over an A man is speaking on a radio A man is talking on a radio
intercom to a crowd of people with people talking in the background with singing in the background
A door creaks as it is opened A person is walking on a wooden floor Someone walking slowly

and closed several times while birds chirp in the background as birds chirp in the background
Sequence-level Representations

w/o CLAP w/ CLAP Ground Truth
Water is running from A person is walking through Someone is walking outside

a faucet into a sink a pile of leaves on a path covered with dried leaves
The wind is blowing and A group of children are Many children are talking and

a car is driving by yelling and screaming screaming, all at the same time
A heavy rain coming down A saw is being used A saw being used to saw wood that

outside during a storm to cut a piece of wood makes squeaking noises at the end
Generation Scheme

Beam search Reranking Ground Truth
A gun is being fired A hammer is repeatedly hit Someone is repeatedly hitting

at a target with a metal object a hammer onto a wall or a nail
Birds are chirping and people Children are playing, a car is driving, and Children shout and play at the playground as
are talking in the background birds are chirping cars loudly drive by in the background
The engine of a car starts and A motorcycle engine starts up and idles A motorcycle engine starts

then the car drives away for a while before idling down and idling again and idles for a while

Table 3: Result on AudioCaps
Model METEOR CIDEr SPICE SPIDEr FENSE

AL-MixGen [29] 0.242 0.769 0.181 0.475 -
Wavcaps [17] 0.250 0.787 0.182 0.485 -
CoNeTTE [5] 0.253 0.806 0.184 0.495 0.643

EnCLAP-base [14] 0.247 0.780 0.186 0.483 0.650
EnCLAP-large [14] 0.255 0.803 0.188 0.495 0.655
EnCLAP++-base 0.257 0.815 0.188 0.501 0.661
EnCLAP++-large 0.269 0.823 0.197 0.510 0.665

of details. The inclusion of DAC, a timestep-level representation,
enables the model to capture more fine-grained details of the scene.
Sequence-level Acoustic Embedding. While the model without
CLAP generally succeeds in capturing the atmosphere of the acoustic
scene, it tends to confound the overall semantic meaning of the scene.
Thus, its captions describe an event similar to the actual event, but
is actually different. We believe this comes from the lack of world
knowledge to clear up the ambiguity. Thus, the variant with CLAP
does not suffer from this issue. We attribute this to the model’s lack of
world knowledge, which fails to resolve ambiguities. Consequently,
its generated captions describe an event that is similar to, yet distinct
from, the actual event. In contrast, the variant with CLAP does not
suffer from this issue.
Generation and Reranking. The captions produced by beam
search variants are typically shorter and more concise, often omitting
scene details. In contrast, the reranking variant generates more
detailed captions that closely align with the label captions.

3.6. Results on AudioCaps

Based on observations from Section 3, we propose EnCLAP++, an
improved version of EnCLAP that incorporates DAC, large-scale
pretraining, and hybrid reranking. We evaluate EnCLAP++ on the
AudioCaps dataset and present the results in Table 3. The assessment
shows that both EnCLAP++-base and EnCLAP++-large outperform
their respective EnCLAP counterparts, demonstrating the effective-
ness of our mix of optimizations across different datasets.

Table 4: DCASE 2024 Challenge Result on Clotho Evaluation Split
Model METEOR CIDEr SPICE SPIDEr FENSE

DCASE 2024 Baseline 0.186 0.442 0.135 0.288 0.510
Feng et al. [30] 0.192 0.495 0.141 0.318 0.525
Kim et al. [31] 0.189 0.409 0.135 0.272 0.526
Liu et al. [32] 0.195 0.493 0.145 0.319 0.533

Chen et al. [33] 0.194 0.509 0.145 0.327 0.541
Jung et al. [34] 0.172 0.344 0.140 0.242 0.554

EnCLAP++ 0.199 0.480 0.148 0.314 0.544

3.7. Results on DCASE Challenge 2024

We submitted a variant of EnCLAP++ to the DCASE Challenge
2024. This variant employs a large version of BART and is pretrained
on an extensive dataset that combines WavCaps, AudioCaps, and
Clotho-Chatmix [6]. Due to the challenge regulations, we could not
use CLAP because of potential overlap with the evaluation dataset.
Therefore, we adopted CNext from Sec 2.2, which was additionally
trained with text-retrieval on WavCaps, AudioCaps, and Clotho, as
the sequence-level representation.

The overall results are presented in Table 4. Our model achieved
second place in the challenge, which was ranked based on the FENSE
metric. Additionally, our model outperformed all other models on
the METEOR and SPICE metrics.

4. CONCLUSION

This study presents an analysis of the EnCLAP framework and its
components. Our investigation reveals that replacing the EnCodec
encoder with the DAC encoder, augmenting the pretraining dataset
with large-scale weakly-labeled data, and the incorporating of a
reranking scheme enhances the model’s performance in audio cap-
tioning. Notably, our modified variant, EnCLAP++ shows significant
improvement over the original model. Future directions for our re-
search involve extending the EnCLAP framework to incorporate
recent advances in large language models, thereby enhancing its
capabilities.
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